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1 (a) The expression for filtering is:

S(x, y) =
∑
u,v

Gσ(u, v)I(x− u, y − v)

where Gσ(u, v) is a low pass filter. (The continuous version also acceptable)

Smoothing removes high-pass noise from the image. This is especially important for
algorithms which compute derivatives of the image (such as Canny and Marr edge detec-
tion, Harris corner detection and blob detection). The derivative operator corresponds
to a high-pass filter which is severely affected by noise. [10%]

(b) First, for separable filters, such as the widely used Gaussian filter,

Gσ(u, v) =
1

2πσ2
exp(− 1

2σ2
(x2 + y2)),

the 2D convolution can be written as two 1D filtering operations,

S(x, y) =
∑
u,v

Gσ(u, v)I(x− u, y − v) =
∑
u

gσ(x− u)
∑
v

gσ(y − v)I(u, v).

Here gσ(x) is a 1D Gaussian gσ(x) = 1√
2πσ2

exp(− 1
2σ2x

2). Second, the support of the
filter can be truncated by removing the tail regions in which the function falls below a
certain threshold, such as 1

1000
of the peak.

A näıve implementation of the filtering operation has computational cost O(N2K2
1)

where N2 = number of pixels, K2
1 = number of pixels in non-truncated 2D Gaussian

filter. The optimised version is O(N2K2) where K2=extent of 1D Gaussian filter and
K2 < K1. [25%]

(c) The Canny edge detection algorithm carries out the following computations on the
smoothed image in order to locate the position and orientation of edges:

1. gradients: find gradient of smoothed image pixels ∇S(x, y)

2. non-maximal suppression: place edgels where |∇S(x, y)| greater than local values
of |∇S(x, y)| in directions ±∇S(x, y)

3. threshold: only retain |∇S(x, y)| ≥ thresh

4. return: output edge positions (xi, yi) and orientations ∇S(xi,yi)
|∇S(xi,yi)|

[25%]
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(d) The Harris corner detection algorithm carries out the following computations on the
smoothed image in order to locate the position of corners:

1. compute gradients of smoothed image: ∇S(x, y) = (Sx, Sy)

2. form outer product of gradients and smooth using another broader Gaussian low
pass filter (note that there are two smoothing operations here, a fact that
was often neglected by candidates in the exam),

A =

[
〈S2

x〉 〈SxSy〉
〈SxSy〉 〈S2

y〉

]
.

Here 〈f(x, y)〉 =
∑

u,v Gσ′(u, v)f(x− u, y − v) and σ′ > σ

3. locate corners and threshold: find locations where det(A)− κ trace(A)2 ≥ thresh

4. return corner positions (xi, yi)

[30%]

(e) Edges do not allow motion to be resolved in the direction of the edge (the so called
aperture problem). For this reason, corners are superior to edges as interest points for
tracking. [10%]
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2 (a) In the pin-hole camera a narrow aperture allows an image to be formed on an image
plane:

pin hole 
camera

image
plane

focal 
length

f

optical
centre

optical axis

world 
point

real
image

switch image coordinates to avoid minus sign

An identical expression can be derived for the component orthogonal to Xc and x:
y/f = Xc/Zc.

These can be seen as the same expressions as given in the question by multiplying out
the matrix expressions: sx = λfXc, sy = λfYc and s = λZc. Eliminating s and λ gives
the expression above.

The perspective projection equations are non-linear due to the division by Zc. By
recasting the equations into homogeneous coordinates, perspective projection becomes
a linear operation. This is especially useful when combining perspective projection
with the rigid body transformation and CCD imaging transformations, which are also
linear operations in these coordinates. This simplifies mathematical and algorithm work
considerably.

[10%]

(b) Consider two parallel planes in world coordinates

nxXc + nyYc + nzZc = d1

nxXc + nyYc + nzZc = d2

Transform to homogeneous world coordinates using Xc = X1

X4
, Yc = X2

X4
and Zc = Z1

X4
:

nxX1 + nyX2 + nzX3 = d1X4

nxX1 + nyX2 + nzX3 = d2X4

By considering the point at infinity encoded byX4 = 0, this implies that in homogeneous
coordinates the two hyperplanes intersect along a common plane nxX1 +nyX2 +nzX3 =
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0. We now transform this plane into homogeneous image coordinates,

x̃ =

 x̃1

x̃2

x̃3

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X1

X2

X3

X4


Therefore, nxx̃1/f + nyx̃2/f + nzx̃3 = 0. We now transform this back into Cartesian
image coordinates using x = x̃1/x̃3 and y = x̃2/x̃3,

nxx+ nyy + nzf = 0

This is the equation for the horizon line.

[40%]

(c) (i) We start with the equation of the ellipse,

(
Xc −X0

a

)2

+

(
Zc − Z0

b

)2

= 1 where Yc = Y0,

and substitute in the perspective projection equations, x = fXc

Zc
, y = fYc

Zc
= fY0

Zc
,

giving:

1 =
1

a2

(
Y0
x

y
−X0

)2

+
1

b2

(
Y0
f

y
− Z0

)2

y2 =
1

a2
(Y0x−X0)2 +

1

b2
(Y0f − Z0)2

This is another ellipse of the following form,

0 =
Y 2

0

a2
x2 +

(
X2

0

a2
+
Z2

0

b2
− 1

)
y2 − 2

a2
Y0X0xy −

2

b2
fY0Z0y +

f 2Y 2
0

b2
.

For the image ellipse to be a circle two conditions must be met. First, 2
a2
Y0X0xy = 0

(the cross term must vanish) which implies X0 = 0 (the ellipse is centred on the
x-axis). This ensures the image is an axis aligned ellipse. Note that Y0 = 0 implies

a line rather than a circle. Second,
Y 2
0

a2
=

Z2
0

b2
− 1 which ensures that the major and

minor axes of the image ellipse are identical. [40%]

(ii) The weak perspective camera assumes that the variation in depth of the objects in
the image is small compared to the distance of the camera from the scene. In this
case ∆Zc

Zc
∝ b

Z0
≈ 0 and the ellipse projects to a line in the image. [10%]
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3 (a) Perspective projection can be written in terms of homogeneous world coordinates, X̃,
and homogeneous pixel coordinates, w̃ = (su, sv, s) as w̃ = K[R|T]X̃.

There are two scenarios to consider:

First we apply this expression to two views of the same scene. W.l.g. we set the trans-
lation to zero, T = 0, and the rotation of the first camera to identity, R = I. Allowing
for the rigid body rotation and intrinsic parameters of the second camera to change
(but not the position) we have,

w̃ = K[I|0]X̃ = KX̃

w̃′ = K′[R|0]X̃ = K′RX̃

Therefore, X̃ = K−1w̃ and substituting this into the second equation above yields,

w̃′ = K′RK−1w̃

Second, consider viewing a plane. Wittout loss of generality we can assume that the
plane is aligned with the z-axis and drop a column out of the projection matrix P =
K[R,T]:

w̃ =

 su
sv
s

 =

 p11 p12 p14

p21 p22 p24

p31 p32 p34

 X
Y
1

 = P̃

 X
Y
1


Therefore, w̃′ = P̃’(P̃)−1w̃ [30%]

(b) (i) Each point provides two constraints. The homography has 8 degrees of freedom so
four points are required. [10%]

(ii) SIFT can return imperfect matches due to 1) interest points not being detected in
corresponding locations due to occlusion, noise in the camera, the scene and lighting
conditions not being static, the changes in viewpoint being too substantial for SIFT
to cope with 2) descriptors in the neighbourhood of two non-corresponding interest
point are similar then mismatches can occur. For example, if image contains many
similar objects/parts of objects. [20%]

(iii) Commented pseudo code for the RANSAC algorithm:

H = eye(3,3) . homography, H = K ′RK−1, initialised to identity
nBest = 0
for int i = 0; i < nIterations; i++ do

P4 = SelectRandomSubset(P) . select subset of points (e.g. 4)
Hi = ComputeHomography(P4) . compute homography from subset
nInliers = ComputeInliers(Hi) . compute no. of consistent points
if nInliers > nBest then

H = Hi
nBest = nInliers

end if
end for

[20%]
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(iv) Assume that RANSAC returns a good solution when all of the members of the
subset of matches that are randomly selected are inliers. If D points are selected
on each iteration and there are many points (so that the fact that points are not
selected with replacement can be ignored) the probability of this occurring on a
single iteration of the algorithm is (1−ρ)D. The probability of not selecting D inliers
in T iterations is therefore (1−(1−ρ)D)T . Therefore, to achieve a desired probability

of success P0 = 1− (1− (1− ρ)D)T . Rearranging for T yields, T = log(1−P0)
log(1−(1−ρ)D)

This question polarised candidates in the exam, even though the statis-
tical reasoning required to solve the problem is quite simple.

[20%]
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4 (a) X′c = RXc+T take the cross product with T giving T ×X′c = T ×RXc and dot product
with X′c to yield 0 = X′c.(T ×RXc).

In order to derive the form of the essential matrix we write the cross product T ×RXc

in matrix form. First consider the cross product T ×Xc,

T ×Xc =

 Tz
Ty
Tz

×
 xc
yc
zc

 =

 Tyzc − Tzyc
Tzxc − Txzc
Txyc − Tyxc


Now rewrite the cross product as a matrix operation,

T ×Xc =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

 xc
yc
zc

 = TxXc

So, using this result, we have X′Tc EXc = 0 where the essential matrix is E = TxR. [40%]

(b) Define pe = (xe, ye, f). Since the epipole must lie on a line between the two optic centres
λT = Rpe + T . Taking the cross product with T yields Epe = 0 [10%]

(c) (i) The form of the essential matrix in this case is:

E =

 0 0 d
0 0 d
−d −d 0


so the epipolar lines are given by x′ + y′ = y + x [10%]

(ii) As the image planes are parallel (and only differ in displacement) the epipoles are
located at infinity in the direction of the epipolar lines.
Candidates often confused epipoles and epipolar lines in the exam.

[10%]

(d) First relate expression for epipole in camera-centred coordinates, pe = (xe, ye, f), to
homogeneous pixel coordinates,

 u
v
1

 =

 ku 0 u0

0 kv v0

0 0 1

 x
y
1


 u
v
1

 =

 ku 0 u0/f
0 kv v0/f
0 0 1/f

 x
y
f


 fu
fv
f

 =

 fku 0 u0

0 fkv v0

0 0 1

 x
y
f


w̃ = Kpe

We now have the following expressions:

p′e
T
Epe = 0 w̃ = Kpe w̃′ = K ′p′e
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eliminate p′e and pe:

w̃′TK ′−TEK−1w̃ = 0 = w̃′TF w̃

where F = K ′−TEK−1 is the 3 by 3 fundamental matrix

If F is known, the search for matches can be restricted to narrow bands around the
epipolar lines. This turns a 2D search into a line search which significantly reduces the
computational complexity of matching.

[30%]
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