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1. Instruction set architectures and memory addressing
(a) An accumulator instruction set architecture uses a special register, the accumulator, as
an implicit operand in many instructions. For example, consider adding two numbers at
memory locations MEM1 and MEM2, storing the result in MEM3:

ldaa MEM1 # accumulator loaded with number at MEM1

adda MEM2 # add number at MEM2, result put back in accumulator

staa MEM3 # accumulator stored at MEM3

Note how the arithmetic instruction adda gets one of its operands from memory. In con-
trast, a general purpose register, load-store architecture does not have a special purpose
accumulator but a large number of general purpose registers. Arithmetic operations can
only operate on numbers in registers: only load and store instructions can access memory.
The addition would look like this:

lw $8,MEM1($0) # register $8 gets number at MEM1

lw $9,MEM2($0) # register $9 gets number at MEM2

add $10,$8,$9 # register $10 gets register $8 plus register $9

sw $10,MEM3($0) # register $10 stored at MEM3

Note how there are no implicit operands. [20%]

(b) MIPS load/store and branch instructions are I-format, in which the address field is 16
bits wide. MIPS jump/jump-and-link instructions are J-format, in which the address field
is 26 bits wide. Load/store address offsets are in bytes, whereas branch/jump targets are in
words. This means that: the offset in a load/store can be no less than 0x8000 = −32768
bytes or more than 0x7FFF = +32767 bytes; the branch target in a branch cannot be more
than 0x8000 = 32768 instructions backwards or 0x7FFF = 32767 instructions forwards;
the jump target must have the same upper four bits as the current contents of the program
counter, i.e. it must be in the same 256 MB memory block as the jump instruction.

Practically, most programs will fit into a 256 MB memory block, facilitating fast, single-
instruction jumps/jump-and-links. Exceptionally, it might be necessary to replace a very
distant jump with a jump-register, loading the register first with the correct 32-bit address:
this would be slower but functional.

The branch target limit is rarely a problem, since conditional branches mostly arise from
loops and if instructions, jumping forwards or backwards to a nearby instruction. In
practice, almost all loops and if clauses span fewer than 215 instructions.



The limited load/store address offset would appear to be the most problematic, giving ac-
cess to only a small portion of the 4 GB address space. In MIPS, programs would normally
occupy the first 256 MB of memory, with data storage starting at address 0x10000000,
which would be well out of range for a load/store offset. However, a MIPS convention
offers a convenient workaround, with $28 reserved as a global pointer containing the ad-
dress 0x10008000. Then, with single instructions of the form lw $8,0xXXXX($28), it is
possible to access rapidly the first 216 data bytes in the range 0x10000000 to 0x100FFFF,
which is where a MIPS compiler might store frequently used global variables. [40%]

(c) Let us first consider the interplay between the program A and the library B. Since they
were compiled separately, they might use the same addresses for data and instructions.
So one job the linker needs to do is relocation. This involves shifting the addresses of
the instructions and data in B so as not to clash with A, and then editing all the absolute
memory references in B (i.e. the address fields in jumps, loads and stores, but not branches)
to reflect the new, relocated addresses. When A was originally compiled, there would have
been unresolved references to functions and data in B. The linker can now resolve these
by inserting the post-relocation addresses from B. Object files (as produced by the partial,
independent compilation of A and B) contain symbol tables and relocation information to
make the linker’s job easier.

The interplay between the executables C and D is different. Again, they might use the
same addresses, but this time we want to protect them from each other rather than link
them together. So this has nothing to do with the linker and everything to do with virtual
memory. All the addresses we have been referring to up until now have been virtual ad-
dresses. The operating system translates these into physical addresses, ensuring that there
are no conflicts. Virtual and physical memory are divided into chunks called pages: the
translation is between a virtual page number and a physical page number. The translations
are stored in a structure called a page table, which is indexed by the virtual page number
and contains the physical page number. The page table is cached in a translation lookaside
buffer to facilitate rapid translation almost all the time, with no need to access the page
table in main memory. [40%]

Assessors’ remarks: This question tested candidates’ understanding of instruction set
architectures and addressing. Most candidates answered (a) well, explaining clearly the
differences between load/store and accumulator architectures. In (b), even though most
candidates understood that the various MIPS address fields were somewhat restricted, they
struggled to elucidate the practical implications of said restrictions. In (c), although many
candidates correctly identified virtual memory as being key to the concurrent execution of
C and D, few were able to discuss the role of the linker in combining A and B. Although
this material was not explicitly lectured, the wording of the question prompted candidates
to think about how references from A to B might be resolved, but few were able to run
with this hint.

2. Pipelined datapaths and branching
(a) Branch hazards occur when the address of the next instruction is required (for instruc-



tion fetching) before an earlier conditional branch instruction has been evaluated. They
can be resolved by any one of, or a combination of, (i) stalling the pipeline until the ad-
dress is known, (ii) assuming the branch is not taken and then flushing the pipeline if it is,
(iii) more sophisticated forms of dynamic branch prediction, followed by flushing if neces-
sary, (iv) delayed branches, whereby the instruction following a branch is always executed
irrespective of whether the branch is taken. [20%]

(b) The comparator is cascaded after the register file. If the comparator is slow, there is
a danger that ID might become the rate-limiting stage of the pipeline and the clock speed
would need to be reduced. However, a fully functional (and hence relatively slow) ALU is
not needed to compare the registers. We just need to know whether they are equal or not.
This could be done by a parallel, bit-wise XOR followed by an AND gate, with no need
for any carries. Using this sort of fast comparator, in place of a full ALU, saves hardware
and reduces the risk of the clock rate having to be reduced. [20%]

(c) Given the single branch delay slot, the instruction after the beq is always executed.

slt $11,$8,$9 # set $11 to 1 if $8 < $9

beq $11,$0,foo # branch if $8 ≥ $9

add $10,$9,$0 # copy $9 to $10 always

add $10,$8,$0 # copy $8 to $10 only if $8 < $9

foo

Assuming data forwarding to resolve the $11 hazard between slt and beq, this code takes
three or four clock cycles, depending on whether $8<$9 or not. [20%]

(d) With the new instructions, we can write code that always takes just three clock cycles.

slt $11,$8,$9 # set $11 to 1 if $8 < $9

movn $10,$8,$11 # copy $8 to $10 if $8 < $9

movz $10,$9,$11 # copy $9 to $10 if $8 ≥ $9

In this example, and again assuming data forwarding, we have reduced the expected in-
struction count from 3.5 to 3. More generally with pipelined datapaths, it is desirable to
avoid conditional branches since these are susceptible to branch hazards and hence delays
of one sort or another. [20%]

(e) movz could be mapped to an R-format instruction:

op rs ($0) rt ($11) rd ($10) shamt ($9) funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

We have used the rt and shamt fields to select the two source registers $11 and $9, and
rd to select the destination register $10. If we then select $0 in rs, we can use existing
elements of the datapath to add rs ($0) and rt ($11), with the ALU’s Zero output deter-
mining whether to write $9 back to rd ($10) or not. The required changes to Fig. 1 are:



• Register file to output three registers, with the shamt field selecting the new Read
data 3 output.

• The ALU output no longer goes directly to MUX3. Instead it goes via a new multi-
plexor, MUX5, which selects between the ALU output and Read data 3.

• A new control signal Movz switches MUX5. Movz will be high for movz and low
for all other instructions.

• The RegWrite control signal no longer goes directly to the register file. Instead it
goes via a new multiplexor, MUX6, which selects between RegWrite and the ALU’s
Zero output. MUX6 is switched using the Movz control signal.

• All other control signals are the same for movz as for add. [20%]

Assessors’ remarks: This question tested candidates’ understanding of pipelined datap-
aths and hazards. In (a), almost every candidate was able to discuss branch hazards and
their mitigation, though a few confused branch hazards with data hazards. In (b), the better
responses acknowledged the possibility of the ID stage becoming the rate-limiting stage
of the pipeline, and realised that a comparator could be designed using bit-wise, parallel
operations with no carries. Responses to (c) were disappointing, with most candidates fail-
ing to make good use of the branch delay slot. In contrast, most candidates were able to
use the new MIPS instructions correctly in (d) and could explain the advantages over the
original code in (c). Responses to (e) were mixed in terms of clarity and detail, with the
better answers identifying the key role played by $0.

3. I/O and DMA
(a) The move to serial point-to-point networks arises because buses cannot keep up with the
bandwidth of today’s I/O devices. The clock rate of a parallel bus is limited by noise, stray
capacitance, crosstalk and clock skew. If we want a fast parallel bus, we would need to
make it short and limit the number of devices connected to it. This conflicts with the basic
requirement that an I/O bus should be long and support as many I/O devices as necessary.

These problems are avoided by doing away with the shared, parallel bus, and replacing it
with a switched point-to-point network. To mitigate the effects of different timing skews
on each bit, these networks are serial. But they can run very fast, since there are only
two devices on each link — so less load, noise and stray capacitance. These new I/O
networks also circumvent the need for bus mastering protocols. Data transfer is typically
synchronous to an embedded clock using, for example, 8b/10b encoding.

Serial connections have the added advantage of requiring fewer wires. This means less
clutter and hence better air flow/cooling inside computer cases. Two examples in recent
PC hardware are the transition from parallel ATA to serial ATA for disk devices, and from
PCI/AGP to PCI express for generic I/O devices and graphics cards. [25%]

(b) Polling, interrupt-driven I/O and direct memory access (DMA) are three different
mechanisms for allowing the CPU to interact with I/O devices. Polling requires the least



hardware: the CPU periodically checks to see whether the device is ready to send or re-
ceive more data, and handles the data transaction if necessary. The polling frequency must
be high enough to satisfy the device’s maximum data transfer rate. This can be tremen-
dously wasteful of CPU time, especially for devices which are mostly idle. Polling may be
used for low bandwidth devices which can tolerate low frequency polling, like mice.

Interrupt-driven I/O requires extra signal lines to interrupt the CPU whenever an I/O device
requires attention. The CPU must still be involved in every bus transaction, so may still
be heavily loaded when the device is active. But, in contrast to polling, there is no CPU
load when the device is idle. Interrupt driven I/O may be used for relatively low bandwidth
devices which are mostly idle, like printers.

DMA is the most expensive technique in terms of hardware, requiring dedicated DMA
controllers. But it is the only viable technique for high bandwidth devices like disks, which
might otherwise fully occupy the CPU with bus transfers. With DMA, the CPU hands
control to a DMA controller, which deals with the individual bus transactions between
the device and memory. Once the transfer is complete, the CPU is interrupted. The CPU
then checks whether the transfer was completed successfully. Care needs to be taken with
cache coherency and the interaction with the virtual memory system, i.e. whether the DMA
controller is supplied with virtual or physical addresses. [25%]

(c) Having status and part of buffer share a cache block is something that should be
avoided at all costs. To see why, let’s go through the DMA process step by step.

• The driver starts a DMA transfer into buffer. As part of this operation, the co-
herency protocol will invalidate the cache blocks containing buffer and also (be-
cause it shares a cache block with buffer) status. Let’s refer to the cache block
contents at this stage as status 0 and buffer 0.

• During the DMA process, the driver periodically reads and writes status. Assuming
a write-back cache, the first time this happens the block will be copied from main
memory into the cache: let’s say its contents are now status 0 and buffer 1 (since
buffer is in the process of being updated by the DMA). The driver then updates
status to status 1.

• At the end of the DMA process, the memory contents will be status 0 and buffer 2

(since there have been further DMA updates to buffer).

At this point, both copies of the troublesome cache block are incorrect. The correct con-
tents should be status 1 and buffer 2; in the cache we have status 1 and buffer 1;
and in main memory we have status 0 and buffer 2. There is nothing that can be done
to recover from this situation. If the processor accesses data in buffer, it will receive
(from the cache) stale data from part way through the I/O process. If the cache block is
written back to main memory, buffer 2 will be incorrectly overwritten by buffer 1. If
we invalidate the cache block again at the end of the DMA operation, we will lose the
changes made to status.



One solution is to route all DMA activity through the cache, but this is expensive and
wasteful of cache space. Alternatively, we could adopt a more sophisticated, snooping
coherency protocol, like the ones used to facilitate inter-thread data sharing in SMPs. But
this, again, is an expensive work-around to solve a problem that should not arise in the
first place. Unlike data sharing in SMPs, which is necessary due to the nature of parallel
processing, there is no reason why the DMA buffer should be touched by other running
threads while the transfer is happening. The coherency protocol should therefore stipulate
that DMA-sensitive buffers must not share cache blocks with other data. [50%]

Assessors’ remarks: This question tested candidates’ understanding of I/O and DMA.
Most candidates demonstrated a good understanding of the principles in (a) and (b), though
a few inexplicably discussed network-connected MIMD parallel processors. Part (c) asked
candidates to dissect a particular, unfamiliar problem with DMA and device drivers. Co-
herent arguments were generously rewarded, even if they failed to appreciate every nuance
of the specific situation. However, many candidates ignored the question and simply wrote
down everything they knew about DMA, receiving little credit in return.
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