
Engineering Tripos Part IIB FOURTH YEAR

Module 4F14: Computer Systems

Solutions to 2025 Tripos Paper

1. Pipelined datapaths and branching
(a) Branch hazards occur when the address of the next instruction is required (for instruc-
tion fetching) before an earlier conditional branch instruction has been evaluated. They
can be resolved by any one of, or a combination of, (i) stalling the pipeline until the ad-
dress is known, (ii) assuming the branch is not taken and then flushing the pipeline if it is,
(iii) more sophisticated forms of dynamic branch prediction, followed by flushing if neces-
sary, (iv) delayed branches, whereby the instruction following a branch is always executed
irrespective of whether the branch is taken. [20%]

(b) By moving the branch decision from the MEM stage to the ID stage, there would be
only one possibly incorrect instruction following the branch in the pipeline, instead of
three. This would enable a delayed branch with one delay slot and no flushing or stalling
whether the branch is taken or not; or, alternatively, an immediate branch with the need for
just one stall or flush if the branch prediction is incorrect.

In terms of precautions, note that the comparator is cascaded after the register file. If the
comparator is slow, there is a danger that ID might become the rate-limiting stage of the
pipeline and the clock speed would need to be reduced. However, a fully functional (and
hence relatively slow) ALU is not needed to compare the registers. We just need to know
whether they are equal or not. This could be done by a parallel, bit-wise XOR followed by
an AND gate, with no need for any carries. Using this sort of fast comparator, in place of
a full ALU, saves hardware and reduces the risk of the clock rate having to be reduced. [20%]

(c) Note the $1 read-after-write data hazard between the slt and the bne. We could reduce
the number of necessary stalls to just one if we forward the result of the slt from the
EX/MEM pipeline register to the comparator input at clock cycle 4:

IM Reg DM Regslt $1,$b,$a

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5

stall

beq $1,$0,dest

forward $1

But, even with data forwarding, the branch could not be resolved any sooner than this.

A direct hardware implementation of ble, bgt, bge and blt would require a full ALU for
subtraction and not the fast comparator in Fig. 2. To avoid ID becoming the rate-limiting
step, the hardware implementation would likely resemble Fig. 1, with branch resolution
at clock cycle 4. This suggests a rationale behind the design of the MIPS ISA, with only
beq and bne implemented directly, since this allows fast branch resolution for these two
instructions as in Fig. 2, with no detriment for the other conditional branches which are
still resolved at clock cycle 4 through slt-type pseudo-instructions. Clearly, fast branch
resolution is desirable, even if only for two types of branch, since it reduces the need for
branch hazard mitigation. [30%]

(d) The CCR cannot be written until the result of the ALU or data transfer instruction is
known, so no sooner than pipeline stage 3 for ALU instructions and stage 4 for lw. A sub-
sequent branch instruction would wish to read the CCR, and hence resolve the branch, as
early as possible, which would be immediately after instruction decoding at pipeline stage
2. However, this introduces the potential for read-after-write data hazards, which would
need to be resolved in the usual way through hazard detection and stalling. Alternatively,
we could simplify the hardware design by having the CCR written and read at the same
pipeline stage (this would need to be stage 4, so as to accommodate lw), eliminating the
possibility of data hazards but increasing the number of stalls required for branch hazards,
since branch resolution would now be later.

In effect, CCR branching is not unlike the slt-type pseudo-instructions considered in (c),
with one instruction setting a status bit and a subsequent instruction testing that bit to
decide whether to branch or not. The big difference, however, is that the MIPS approach is
explicit whereas the CCR approach is implicit, with CCR bits changed as a side-effect of
almost all instructions. This has profound implications for dynamic pipeline scheduling,
since any instruction scheduled in an otherwise unfilled slot has the potential to effect the
CCR and hence break a subsequent branch instruction. In effect, the number of potential
hazards that the scheduler must consider is increased dramatically, often for no purpose
since most CCR bit updates are not subsequently tested by a later branch instruction.

Finally, whereas a MIPS slt can write to any register, there is only one physical CCR
and hence the need for scheduling restrictions with superscalar pipelines, since only one
instruction can write to the CCR at a time. [30%]

As an aside, it is telling that although ARM uses a CCR for branching, updating the CCR
is optional, so the programmer/compiler can touch the CCR only when strictly necessary
for a subsequent branch test. This is more or less the same as the MIPS slt-type pseudo-
instructions, just dressed up differently.

Assessor’s remarks: This question tested candidates’ understanding of pipelines and haz-
ards. The book work in (a) was answered well by the vast majority of candidates, though
a handful confused data and branch hazards. Similarly, in (b), almost all candidates un-
derstood the purpose of the modification and the need to make the comparator fast. In (c),
most candidates spotted the data hazard between the two instructions but not all suggested
data forwarding as a way to reduce the number of stalls, making it rather difficult to justify

the use of pseudo-instructions. In (d), only a handful of students hit the nail on the head,
but many others nevertheless received credit for sensible discussions that demonstrated
some understanding of the key issues.

2. Virtual memory, TLBs and caches
(a) There are two main requirements that motivate the adoption of a virtual memory sys-
tem. The first is the desire to be able to write programs without having to worry about the
amount of physical memory installed in the computer. The second is the need for the CPU
to execute multiple processes separately: each process should be unaware of, and protected
from, the others.

However, the need to look up address translations in the page table (which is large and
therefore stored in main memory) undermines the existence of the cache. So the CPU
typically contains a small, fast cache called the translation lookaside buffer (TLB) which
caches recently used page table entries. Locality of reference to the page table means that
the TLB miss rate is typically very low. [25%]

(b) (i)

=

virtual
address

31 012 111819

dirty

TLB hit
012 11

physical address

block offset

13

31

rows

MUX

page offset

V tag

tag

page offset

page table entries

index

virtual page number

physical page number

64

In the event of a TLB miss, if the page exists in MM, the TLB entry can be updated from
the page table and the translation retried. Otherwise, a page fault is generated. [20%]

(ii) The process will repeat a large number of lw $a, sw $b instruction pairs, where $a
iterates through array A and $b iterates through array B. The starting addresses for A and
B in binary are 10000000 . . . 0000 and 10010000 . . . 0000, so $a and $b will differ only in
bit 28 throughout. Bit 28 is in the TLB tag, not the index, so the indices into the TLB will
be the same for each lw/sw pair. This is going to be catastrophic for performance: every
address translation will result in a TLB miss and a main memory access to read the page
table, regardless of whether the required words from A and B are in the data cache.

The problem is that the TLB is direct-mapped. TLBs are small and are therefore amenable
to fully associative design, since there are only a small number of tags to check in parallel.
LRU block replacement is difficult to implement in hardware, but even with random block
replacement the situation would be improved considerably. [25%]

(c) Compared with our small TLB (just 64 rows in the example above), caches are much
larger, even L1 caches at the top of the hierarchy. A 64 KiB L1 cache with a block size
of four would have 4096 rows, so a fully associative design is going to be infeasible given
our overriding desire for a short hit time. Hence, compared with TLBs, instruction/data
caches are in general considerably larger with less associativity. L1 caches may even be
direct-mapped.

Returning to the pattern of memory accesses in (b)(ii), it is important to understand that
the data cache would normally work with physical addresses. Only bits 0–11 (the page
offset) of the physical address are knowable, with bits 12–31 depending on which physical
page the operating system has allocated. The L1 cache example above (64 KiB, four-word
blocks) would use bits 4–15 for the index if direct-mapped. Address bits 0–11 are the same
for A and B, but as long as bits 12–15 of the physical page numbers are not identical, they
would not be competing for the same cache row. If we did not want to leave this to the
operating system to get right, the compiler/programmer could guarantee cache-friendly
behaviour by making sure that the page offsets of the two virtual addresses differ. For
example, starting A and B at virtual addresses 0x80000000 and 0x90000800, respectively,
would work. [30%]

Assessor’s remarks: This question tested candidates’ understanding of virtual memory,
TLBs and caching. The book work in (a) was well answered by all candidates, as expected.
In (b)(i), many candidates did well though others sketched generic cache configurations
without explicitly showing how the addresses are divided into page offsets and page num-
bers. In (b)(ii), it was pleasing to see many candidates identifying the TLB conflicts and
suggesting increased associativity as the solution. (c) was not well answered: while many
candidates identified size and associativity as the key issues, very few had anything coher-
ent to say about the pattern of cache accesses, since most missed the important detail that
caches normally work with physical addresses. There were many responses that were sim-
ply lecture note dumps, hoping to stumble upon a salient point. Such responses received
little credit.

3. ISAs and I/O

(a) An accumulator instruction set architecture uses a special register, the accumulator, as
an implicit operand in many instructions. For example, consider adding two numbers at
memory locations MEM1 and MEM2, storing the result in MEM3:

ldaa MEM1 # accumulator loaded with number at MEM1

adda MEM2 # add number at MEM2, result put back in accumulator

staa MEM3 # accumulator stored at MEM3

Note how the arithmetic instruction adda gets one of its operands from memory. In con-
trast, a general purpose register, load-store architecture does not have a special purpose
accumulator but a large number of general purpose registers. Arithmetic operations can
only operate on numbers in registers: only load and store instructions can access memory.
The addition would look like this:

lw $8,MEM1 # register $8 gets number at MEM1

lw $9,MEM2 # register $9 gets number at MEM2

add $10,$8,$9 # register $10 gets register $8 plus register $9

sw $10,MEM3 # register $10 stored at MEM3

Note how there are no implicit operands and hence longer instructions. Finally, in a stack
architecture all operations occur at the top of the stack, with only push and pop instructions
accessing memory. The addition would look something like this:

push MEM1 # number at MEM1 pushed onto the stack

push MEM2 # number at MEM2 pushed onto the stack

add # add numbers at the top of the stack, result

placed at the top of the stack

pop MEM3 # number at the top of the stack stored at MEM3

The accumulator instructions would require around three bytes each: one for the opcode
and two for each address, giving a total of 9 bytes. The GPR instructions would be around
four bytes each, one for the opcode, one for each register identifier and two for each ad-
dress, giving a total of 16 bytes. Following similar reasoning, the stack instructions would
be 3 + 3 + 1 + 3 = 10 bytes.

At first sight, it would appear that load-store, GPR instructions have a disadvantage, in
that they require more and/or longer instructions to be fetched from memory, with im-
plications for execution time: more fetch-decode-execute cycles and/or more instruction
cache misses. However, the benefits of the RISC approach generally outweigh the loss of
instruction concision.

In particular, fixed length instructions are more amenable to pipelining, and the large num-
ber of general purpose registers (in contrast to a single accumulator) provides temporary

variable storage and hence reduces memory traffic for data. The load-store approach fa-
cilitates scheduling, since ALU operations are not susceptible to unpredictable data access
latencies (cache misses/stalls). ALU operations can also be scheduled alongside data trans-
fer instructions in superscalar pipelines, with no danger of data cache resource contention.
With just a few instruction formats, limited operations and simple addressing modes, there
is no need for complex datapath control (microcode). Some RISC architectures even over-
come the code density handicap by offering two fixed length instruction formats, usually
32-bit and 16-bit. The different instruction encodings cannot be mixed freely but must be
switched between explicitly. [50%]

(b) Polling, interrupt-driven I/O and direct memory access (DMA) are three different
mechanisms for allowing the CPU to interact with I/O devices. Polling requires the least
hardware: the CPU periodically checks to see whether the device is ready to send or re-
ceive more data, and handles the data transaction if necessary. The polling frequency must
be high enough to satisfy the device’s maximum data transfer rate. This can be tremen-
dously wasteful of CPU time, especially for devices which are mostly idle. Polling may be
used for low bandwidth devices which can tolerate low frequency polling, like mice.

Interrupt-driven I/O requires extra signal lines to interrupt the CPU whenever an I/O device
requires attention. The CPU must still be involved in every bus transaction, so may still
be heavily loaded when the device is active. But, in contrast to polling, there is no CPU
load when the device is idle. Interrupt driven I/O may be used for relatively low bandwidth
devices which are mostly idle, like printers.

DMA is the most expensive technique in terms of hardware, requiring a dedicated DMA
controller on the processor-memory bus. But it is the only viable technique for very high
bandwidth devices, like graphics cards and disks, which might otherwise fully occupy
the CPU with bus transfers. With DMA, the CPU hands control to the DMA controller,
which deals with the individual bus transactions between the device and memory. Once
the transfer is complete, the CPU is interrupted. The CPU then checks whether the transfer
was completed successfully or whether there was an error. [25%]

(c) DMA poses problems for both virtual memory systems and caches. Starting with virtual
memory, the DMA controller is supplied with a starting address and a number of bytes to
transfer. But should the starting address be virtual or physical? If virtual, then the DMA
controller will need extra hardware to store the necessary page table entries and perform
the translations. If physical, then care must be taken to ensure that DMA transfers do not
cross page boundaries, since contiguous virtual pages do not generally map to contiguous
physical pages. Whichever approach is taken, the operating system must cooperate by not
moving pages around while a DMA transfer involving that page is in progress.

Moving on to caches, there are two potential problems here. When transferring data from
the I/O device to memory, there may be a copy of this chunk of memory in the cache. If
the processor reads from this chunk, it will get the old value (from the cache) and not the
new value (as updated by the DMA controller). Similarly, when DMA is used to transfer
data from memory to the I/O device, and the cache is write-back, the DMA controller may

transfer an old value from memory when there is a newer one in the cache. This is called
the stale data problem.

There are three ways round this. One possibility is to route all DMA activity through the
cache, though this is expensive and very wasteful of cache space, since the processor rarely
needs to see the I/O data immediately and, in the meantime, useful data has been displaced
from the cache. The second option is to have the operating system invalidate the cache
for an I/O write or force write-backs for an I/O read. This sort of cache flushing requires
minimal hardware support but is inefficient, since the whole cache is affected even if only
one block overlaps with the DMA activity. The final, most complex option is to provide
hardware mechanisms to selectively flush individual cache entries. [25%]

Assessor’s remarks: The first part of this question asked candidates to investigate the code
density of accumulator, stack and GPR load/store ISAs. It was well answered by many,
though some candidates ignored the number of instructions, focusing exclusively on their
length. When candidates were asked to explain why GPR load/store ISAs are neverthe-
less attractive, a coherent response would first need to explain why low code density is a
problem: more execution cycles and/or more instruction cache misses. Instead, many can-
didates simply wrote down everything they could remember about GPR load/store ISAs,
without addressing the question directly. The second part of the question was book work
about I/O and was very well answered by the vast majority of candidates.

Andrew Gee
May 2025

