Engineering Tripos Part 1IB FOURTH YEAR

Module 4F14: Computer Systems
Solutions to 2021 Tripos Paper

1. Instruction set architectures, datapaths, pipelining

(a) A load-store instruction set architecture is an example of a general purpose register
(GPR) architecture where the operands of arithmetic and logic instructions must be lo-
cated in registers, not memory. If a memory access always took one clock cycle, then there
would be little downside to allowing arithmetic and logic instructions to operate directly
on operands in memory. However, over the years CPU speeds have increased significantly
faster than memory speeds, and caching strategies have evolved to address this discrep-
ancy. A consequence is that memory accesses are now highly unpredictable: there may be
no latency for a top-level cache hit, or a small latency for a lower level cache hit, or a longer
latency for a main memory access, or an enormous latency for a page fault. In this context,
a load-store architecture is attractive in that this uncertainty is factored out from arithmetic
and logic instructions, with typically comprise around 50% of the instruction mix. Optimal
scheduling of these instructions, whether static or dynamic, therefore becomes much more
tractable. In contrast, a non-load-store architecture has to allow for arithmetic and logic in-
structions stalling for an unpredictable number of cycles while waiting for memory, which
makes them much less easy to schedule optimally. From a historical perspective, then, it
is not so much the case that load-store architectures were specifically invented, but rather
that load-store operations were gradually removed from arithmetic and logic instructions
in response to the evolving characteristics of memory systems. [25%]

(b) The add instruction is what discriminates between these three ISA classes. It is clear
from the code segments that the operands A, B and C are all in memory. For a stack ISA
(the first code segment), operands are implicit and taken from the stack, so the add in-
struction has no explicit operands. Instead, the operands A and B are first pushed onto the
stack and the result C is then popped off the stack. For the accumulator ISA (the second
code segment), one operand is implicitly the accumulator, the result also ends up in the
accumulator, and the add instruction takes just one further operand (B). The other operand
A is loaded into the accumulator before the add, and the result C is transferred from the ac-
cumulator following the add. The third code segment is the load-store architecture, where
all operands are explicit and the add instruction involves no memory access. [20%]

(c) The datapath can already add a register to a 16-bit sign-extended constant within the
instruction: this is how load-store instructions calculate the memory address. So addi will
work with the datapath as it stands. Furthermore, no extra control signals are required, just
a new combination of the current signals:

| Signal | Setting

MemRead | Low (no memory access)

MemWrite | Low (no memory access)

ALUSrc Sign-extended instruction[15-0]

RegDst Instruction[20-16]

RegWrite | High (write register)

Branch Low (replace PC with PC+4)
MemtoReg | Low (write ALU output to register file)
ALUOp 00 (add independent of instruction[5-0])

(d) With the modified instruction set, load-store instructions no longer use the ALU to
calculate the memory address: instead, the address comes straight from the register file.
The data memory address input would need to be connected to the “read data 1” output of
the register file instead of the ALU output.

The longest path through the datapath is now for the R-format and 1w instructions, which
both require 2 + 1 + 2 + 1 = 6ns. The datapath could now process 10? /6 = 166.7 x 10°
instructions per second, at the expense of more instructions.

Consider a program which executes n instructions, including kn offset load-store instruc-
tions. The time to execute this program on the original datapath is 8n nanoseconds.
With the new datapath, after the assembler has translated the pseudo-instructions we have
(1 — k)n + 2kn = (1 + k)n instructions, taking 6(1 + k)n nanoseconds to execute. For
a positive impact on performance, we require 6(1 + k)n < 8n or k < 1/3. So we require
fewer than 33% offset load-store instructions for the modification to be worthwhile.

The traditional way to pipeline the stripped-down MIPS datapath is with five stages: in-
struction fetch (IF), instruction decode and register fetch (ID), execution and effective
address calculation (EX), memory access (MEM) and write back data to registers (WB).
Since the speed of the pipeline is limited by the slowest stages, one instruction can be is-
sued every 2 ns. Hazards unresolved by data forwarding or compiler optimisations may
slightly reduce the processing rate.

With the instruction set modification, no instruction will ever need to go through both
the EX and MEM stages, so these parts of the datapath can be combined into a single
EX/MEM pipe stage: load-store instructions will access memory, other instructions will
use the ALU. Our new, four-stage pipeline has reduced latency but offers no throughput
advantage: it can still accept only one instruction every 2 ns. The one advantage might be
the reduction in data hazards: with data forwarding, the result of a 1w can be available at
the ALU input for an instruction following immediately behind. However, it is unlikely
this will compensate for the extra addi’s introduced by the pseudo-instruction translation.

Assessors’ remarks: This question tested the candidates’ knowledge of instruction set ar-
chitectures, datapaths and pipelining. It was generally well answered, the only weak link
being the second part of (a) where candidates struggled to extrapolate their knowledge to

[15%]

[40%]

speculate how load-store operations might have been gradually removed from arithmetic
and logic instructions in response to the evolving characteristics of memory systems. An-
swers to all other parts of the question were generally good, though a few candidates failed
to realise that the modification in (d) allows all instructions to run faster on the unpipelined
datapath (i.e. a faster clock speed), not just load-store instructions.

. Parallel processing, caches, DMA
(@)

MIMD, Multiple Instruction Streams Multiple Data Streams. A computer classifica-
tion in Flynn’s taxonomy of parallel processing machines. Multiple uniprocessors
connected on a single bus or via a network. The most general form of parallelism.

SMP, Symmetric Multiprocessor. A type of single address space multiprocessor in which
accesses to main memory take the same amount of time no matter which processor
requests the word and no matter which word is requested.

UMA, Uniform Memory Access. Means the same thing as SMP.

NUMA, Nonuniform Memory Access. A type of single address space multiprocessor in
which some memory accesses are faster than others depending on which processor
asks for which word.

(b) A small number of processors can be connected together as in Machine A. Since each
processor has its own cache, the single bus and memory system can serve the needs of all
the processors, as long as there are not too many of them (up to a few tens of processors).
This is a SMP.

With more processors, the single bus and memory system becomes a bottleneck, and the
need for a physically longer bus also reduces the bus’s bandwidth and increases its latency.
So architectures like Machine B tend to be used for larger MIMD machines. The memory
is distributed amongst the nodes, so local processor-memory traffic can proceed at a high
rate, independent of the number of processors. Inter-processor communication, however,
is over a network and slower than in a single bus design.

(c) Machine B can use either shared memory or message passing. Just because the mem-
ory is distributed doesn’t mean it cannot be shared: the physically separate memories can
be addressed as one unified address space, albeit with nonuniform memory access. Alter-
natively, each processor’s memory can be completely private and inaccessible to remote
processors: the processors will then have to communicate by message passing.

(d) Increasing the cache block size can lead to a higher miss rate in SMPs if a write-
invalidate coherency protocol is used. Suppose processor A writes word X. Also suppose
that processor B’s cache contains a copy of the block containing X: this block is invalidated
when A writes. Now suppose processor B wishes to read word Y, which is distinct from
X but in the same cache block. The read will miss, since the cache block has just been
invalidated by A’s write, even though word Y was not written by A. This cache miss would
not occur with one-word blocks. This phenomenon is known as false sharing.

[10%]

[10%]

[10%]

[20%]

(e) We will assume that the multithreaded software is correctly written with appropriate
synchronisation, so that Thread B does not attempt to read the shared memory until the
I/0 has completed. But there is still plenty for the hardware and operating system to do, to
ensure that Thread B sees the updated data.

First, note that the question asked about measures to ensure that the CPU is not unduly
loaded by the I/0O. This implies direct memory access (DMA). With DMA, the CPU hands
control to a DMA controller, which deals with the individual bus transactions between the
device and memory. Once the transfer is complete, the CPU is interrupted. The CPU then
checks whether the transfer was completed successfully or whether there was an error.

DMA poses challenges for both virtual memory systems and caches. Starting with virtual
memory, the DMA controller is supplied with a starting address and a number of bytes to
transfer. But should the starting address be virtual or physical? If virtual, then the DMA
controller will need extra hardware to store the necessary page table entries and perform
the translations. If physical, then care must be taken to ensure that DMA transfers do not
cross page boundaries, since contiguous virtual pages do not generally map to contiguous
physical pages. Whichever approach is taken, the operating system must cooperate by not
moving pages around while a DMA transfer involving that page is in progress.

Moving on to caches, there is a potential problem when transferring data from disk into
memory, as in this example. There may be a copy of this chunk of memory in the caches
of both Cores 1 and 2. So when Thread B, on Core 2, next reads from the shared memory,
it may get the old value (from the cache) and not the new value (as updated by the DMA
controller). There are three ways round this. One possibility is to route all DMA activity
through both caches, though this is expensive and very wasteful of cache space, since the
processor rarely needs to see all the I/O data immediately and, in the meantime, useful data
has been displaced from the caches. The second option is to have the operating system
invalidate the caches for an I/O write or force write-backs for an I/O read. This sort of
cache flushing requires minimal hardware support but is inefficient, since the whole cache
is affected even if only one block overlaps with the DMA activity. The final, most complex
option is to provide mechanisms to selectively flush individual cache entries.

Assessors’ remarks: This question tested the candidates’ understanding of parallel pro-
cessing hardware and I/O protocols. Answers to (a) and (b) were very good, with all
candidates demonstrating a sound knowledge of the basics. In (c), a common mistake
was to assume that distributed memory cannot be shared. In (d), the phenomenon of false
sharing was well understood, though not all candidates illustrated their answers with the
specific example that the question requested. In (e), it was pleasing to see most candidates
identifying DMA as being relevant, even though the question did not explicitly refer to it.
As with all essay-style questions, the best responses were characterized by sound edito-
rial judgment, addressing the question that was actually asked rather than just offering a
general discourse about DMA.

[50%]

3. Virtual memory systems

(a) There are two main requirements that motivate the adoption of a virtual memory sys-
tem. The first is the desire to be able to write programs without having to worry about the
amount of physical memory installed in the computer. The second is the need for the CPU
to execute multiple processes separately: each process should be unaware of, and protected
from, the others. [10%]

(b) (1) The TLB is fully associative, the cache is direct-mapped. The cache block size is 4
bytes (one word). [10%]

(i) On a TLB miss, the address translation is looked up in the page table instead. This
is slower than a TLB look-up, since the page table resides in main memory. If the page
exists in main memory, then the TLB entry can be updated from the page table (replacing
another TLB entry, perhaps the least recently used one) and the translation retried. If the
page resides on disk, then a page fault occurs. The operating system fetches the required
page from disk, swapping it with another page (usually the least recently used one) in main
memory. To save disk writes when a page hasn’t changed, the page table and TLB include
a dirty bit to show whether the page’s contents differ from the data on disk. After the
page has been loaded into main memory, the page table and TLB are updated with the new
translation and the translation is retried. [15%]

(iii) There are a total of 22° pages. Each page table entry contains a physical page number
(20 bits) along with valid and dirty bits (2 bits). Rounding up to the nearest whole byte,
each page table entry is 3 bytes long. So the total size of the page table is 22° x 3 = 3 MiB.
For a 64-bit virtual address, there would be 2°? virtual pages. Assuming (say) 8 GiB of
physical memory, the physical page number would be 21 bits wide, resulting in page table
entries of 3 bytes, so a page table would occupy up to 2°2 x 3 = 12 PiB. This is clearly not
acceptable, especially seeing as one page table is required for each running process. [15%]

(c) By including a process identifier in the inverted page table entries, we can make do
with a single, global page table shared between all processes. The inverted page table
would then contain all the information we need: one entry per physical page, showing
which (if any) virtual page is mapped to it. The process identifier is necessary since differ-
ent processes might use the same virtual addresses.

The storage requirements for the inverted page table are reasonable and depend on the
amount of physical memory, not the amount of virtual memory. For example, assuming
8 GiB of physical memory and 4 KiB pages, there would be 22! rows in the inverted page
table. For a 64-bit virtual address, each row would need to hold a virtual page number (52
bits), a process identifier (maybe 16 bits), and valid and dirty bits (2 bits). Rounding up to
the nearest whole byte, this gives 9 bytes per entry. So the total storage requirement would
be 9 x 221 = 18 MiB.

The speed of address translation would be, at first sight, rather slow, since the inverted
page table is not indexed by the virtual page number. Naively, we could perform a linear
search of the entire table, checking every stored process identifier/virtual page number to

see if it matches the one we are trying to translate. If we get to the end of the page table
without finding it, we have a page fault. Considering the example above, that would be
2M memory accesses to identify a page fault, and on average 1M memory accesses for a
successful translation. With more sophistication, we could employ some sort of hashing
strategy to decide where in the inverted page table an entry should be stored. And besides,
we should bear in mind that page table lookups are not required for the vast majority of
translations, given the efficacy of the TLB.

For the multi-level approach, each table clearly has to reside in a continuous region of
physical memory. Hence, a one-page table is a good idea since the operating system kernel
can simply grab another page of memory when it needs to create a new table, with no
wastage. For the current example of 4 KiB pages and assuming 4-byte page table entries
(a reasonable guesstimate), each table can have no more than 2'° rows if it is to fit in a
page. The lower 12 bits of the virtual address are the page offset, leaving 52 bits for the
virtual page number. We need to split these 52 bits into chunks of at most 10 bits, with
each chunk indexing a table in the hierarchy. We therefore need six levels.

The speed of translation is linear in the number of levels in the hierarchy, so perhaps a little
slower than a hashed inverted page table, but again this is of little consequence since most
address translations are provided by the TLB. The amount of memory storage required for
the page tables depends not on the size of the physical or virtual address space, but on the
amount of memory that the process is actually using.

Comparing the two schemes, the multi-level approach would normally win on storage re-
quirements (unless all the system’s physical memory is in use by active processes), while
there is little to choose between the two in terms of look-up time, which is anyhow of little
consequence given the TLB. Another win for the multi-level approach is in dealing with
shared memory for parallel processing. With a multi-level page table, it is perfectly possi-
ble for multiple virtual pages (from different processes) to point to the same physical page.
For the inverted page table, we would need to somehow extend the table to accommodate
multiple virtual page numbers/process identifiers for shared physical page numbers. It is
not surprising, therefore, that inverted page tables are used in very few architectures.

Assessors’ remarks: This question tested the candidates’ understanding of virtual mem-
ory systems, in particular TLBs and page tables. The more familiar topics in parts (a) and
(b) were well handled by the vast majority of candidates. There was a greater spread of
marks in (c), where candidates were asked to extrapolate their knowledge beyond book-
work to consider the pros and cons of inverted and multi-level page tables. There were
some excellent responses addressing all the salient points, but also some more sketchy an-
swers that revealed the limits of the candidates’ understanding. The most common weak-
ness was a failure to realise that the amount of storage required for the multi-level page
tables depends not on the size of the physical or virtual address space, but on the amount
of memory that the process is actually using.

Andrew Gee
May 2021

[50%]

