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The approximate percentage of marks allocated to each part of a question is indicated
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1 The position of a mass is to be controlled through a linear spring. The (normalised)

transfer function relating the position of the mass to the free end of the spring is given by

G(s) =
1

s2
+ 1
.

(a) A proportional-integral-derivative controller with negative feedback is proposed for

G(s) of the form:

K(s) =
ki

s
+ kp + skd .

Use the Routh-Hurwitz criterion to determine necessary and sufficient conditions for

closed-loop stability treating the two cases separately: (i) ki = 0, (ii) ki , 0. [20%]

(b) A proportional-plus-derivative controller in the form kC(s) is selected with C(s) =

s+1. Closed-loop stability is to be assessed using a Nyquist diagram of L1(s) = C(s)G(s).

(i) Sketch an s-plane contour with any necessary imaginary axis indentations

along which G(s) will be evaluated. [5%]

(ii) Sketch the complete Nyquist diagram of L1(s) paying close attention to the

image of any semi-circular indentations of the contour in Part (b)(i). [The locus of

L1( jω) for ω > 0 is shown in a finite part of the complex plane in Fig. 1.] [10%]

(iii) Determine the number of closed-loop poles with Re(s) > 0 for each real k. [5%]

(c) Repeat Part (b) for a proportional-plus-integral controller with C(s) =
1

s
+ 1. [The

locus of L1( jω) for ω > 0 is shown in a finite part of the complex plane in Fig. 2.] [20%]

(d) Let S(s) = (1 + G(s)K(s))−1 denote the sensitivity function for an internally

stabilising controller K(s) of bounded high frequency gain.

(i) Show that S( j) = 0 and S(∞) = 1. [10%]

(ii) Explain why there must be a frequency ω0 such that |S( jω0)| > 1. [You may

state without proof any results you use.] [15%]

(iii) By considering the function

S(s) =
s2
+ 1

(s + 1)2

show that Part (d)(ii) no longer holds if the high frequency gain requirement on K(s)

is removed. [15%]
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2 In the linear (non-ideal) operational amplifier circuit of Fig. 3, Z1(s) and Z2(s) are

circuit impedances which relate the Laplace transforms of the voltage across to current

through a circuit element or network, v1, v2 are input and output voltages and v is the

voltage at the inverting input of the op amp.

(a) Assuming that the currents into the input terminals of the op amp are negligible

show that

Z1v̄2 + Z2v̄1 = (Z1 + Z2)v̄

where v̄ denotes the Laplace transform of v etc. [10%]

(b) Suppose that the op amp gain is determined by a transfer function G(s), i.e. v̄2 = −Gv̄.

Show that the op amp circuit can be represented by the block diagram of Fig. 4. [15%]

(c) Suppose Z1 = 1 and Z2 = 6 and that

G(s) =
7000

10s + 1
.

Sketch the Bode diagram of the transfer function relating −v̄2 to v̄1. [15%]

(d) Variations in the op amp gain suggest that it should be modelled with multiplicative

uncertainty as: G1 = G(1 + ∆) where |∆( jω)| ≤ h(ω) for all ω. Determine a necessary

and sufficient condition for robust stability. You may assume the Small Gain Theorem. [15%]

(e) For Z1, Z2 and G as in Part (c) and

h(ω) =

�

�

�

�

jω + 10

jω + 100

�

�

�

�

show that the op amp circuit is robustly stable. [15%]

(f) Take G(s) as in Part (c), Z1 = 1 and suppose the impedance Z2 takes the form of a

lead compensator:

Z2(s) =
20s + 400

s + 300
.

(i) Show that Z1/(Z1 + Z2) takes the form of a lag compensator. [10%]

(ii) Show with reference to the phase of the return ratio of the feedback loop in

Fig. 4, or otherwise, that the nominal op amp circuit is stable. [10%]

(iii) By considering the frequency s = j100 show that the op amp circuit is not

robustly stable with h(ω) as in Part (e). [10%]
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3 A controller is to be designed for an inverted pendulum on a cart. The transfer-

function relating cart velocity to force applied to the cart takes the (scaled) form:

G(s) =
100(s2 − 1)

s(s2 − 100)
.

(a) (i) Express the transfer-function in the form

G(s) = Gm(s)Bp(s)Bz(s)

where Bp(s) is a pole-type all-pass function with Bp(0) = 1, Bz(s) is a zero-type

all-pass function with Bz(0) = 1, and Gm(s) has no poles or zeros with Re(s) > 0. [10%]

(ii) Comment briefly on any limitations that may be experienced in the design of

a controller for G(s). [15%]

(b) (i) By considering the root-locus of G(s), or otherwise, explain why a stabilising

controller for G(s) must contain a right half-plane pole. [10%]

(ii) By considering the real axis portions of the root-locus for Re(s) > 0 explain

why a controller with a single right half-plane pole and no right half-plane zeros is

unable to stabilise G(s). [15%]

(c) (i) Sketch the root-locus diagram of

G1(s) =
(s − 1)2

s(s − 10)2

and hence verify that this plant can be stabilised by proportional gain feedback.

[Hint: the breakaway points are: -5, -2, 1, 10.] [15%]

(ii) Find the value of feedback gain for which there is a double pole at s = −2. [10%]

(d) (i) Use Part (c) to write down a stabilising controller K(s) for G(s). [Hint: left

half-plane pole zero cancellations between G(s) and K(s) are allowed.] [10%]

(ii) Sketch the Bode diagram of G(s)K(s). [15%]

END OF PAPER
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Formulae sheet for Module 4F1: Control System Design
To be available during the examination.

1 Terms

For the standard feedback system shown below, the Return-Ratio
Transfer Function L(s) is given by

L(s) = G(s)K(s),

the Sensitivity Function S(s) is given by

S(s) =
1

1 +G(s)K(s)

and the Complementary Sensitivity Function T (s) is given by

T (s) =
G(s)K(s)

1 +G(s)K(s)

G(s)

K(s)

w̄(s)

ȳ(s)

v̄(s)

✲ ✲ ✲ ✲

✛✛

❄

✻

❄

❡

-
+ ❡+

+

❡
+

+

The closed-loop system is called Internally Stable if each of the four
closed-loop transfer functions

1

1 +G(s)K(s)
,

G(s)K(s)

1 +G(s)K(s)
,

K(s)

1 +G(s)K(s)
,

G(s)

1 +G(s)K(s)

are stable (which is equivalent to S(s) being stable and there being no right
half plane pole/zero cancellations between G(s) and K(s)).
A transfer function is called real-rational if it can be written as the ratio of
two polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

K(s) = α
s+ ωc/α

s+ ωcα
, α > 1

achieves its maximum phase advance at ω = ωc, and satisfies:

|K(jωc)| = 1, and 6 K(jωc) = 2 arctanα− 90◦.
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3 The Bode Gain/Phase Relationship

If

1. L(s) is a real-rational function of s,

2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and

3. satisfies the normalization condition L(0) > 0.

then

6 L(jω0) =
1

π

∫ ∞

−∞

d

dv
log |L(jω0e

v)| log coth
|v|

2
dv

Note that

log coth
|v|

2
= log

∣

∣

∣

∣

ω + ω0

ω − ω0

∣

∣

∣

∣

, where ω = ω0e
v.
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Figure 1:

If the slope of L(jω) is approximately constant for a sufficiently wide range
of frequencies around ω = ω0 we get the approximate form of the Bode
Gain/Phase Relationship

6 L(jω0) ≈
π

2

d log |L(jω0e
v)|

dv

∣

∣

∣

∣

v=0

.
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4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in
Re(s) > 0, then if s0 = σ0 + jω0 with σ0 > 0

logH(s0) =
1

π

∫ ∞

−∞

σ0

σ2
0 + (ω − ω0)2

logH(jω) dω

and

log |H(s0)| =
1

π

∫ ∞

−∞

cosh v cos θ

sinh2 v + cos2 θ
log |H

(

j|s0|e
v
)

| dv

where v = log
(

ω

|s0|

)

and θ = 6 (s0). Note that, if s0 is real, so 6 s0 = 0, then

cosh v cos θ

sinh2 v + cos2 θ
=

1

cosh v
.

We define

Pθ(v) =
cosh v cos θ

sinh2 v + cos2 θ
and give graphs of Pθ below.
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The indefinite integral is given by
∫

Pθ(v) dv = arctan

(

sinh v

cos θ

)

and
1

π

∫ ∞

−∞

Pθ(v) dv = 1 for all θ.

G. Vinnicombe
M.C. Smith

November 2021
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Answers

1(b)(iii) Closed-loop stable for k > 0; 2 RHP poles for −1 < k < 0; 1 RHP pole for

k < −1.

1(c)(iii) 2 RHP poles for k > 0; 1 RHP pole for k < 0.

3(a)(i)

G(s) = Gm(s)Bp(s)Bz(s) =
100(1 + s)2

s(10 + s)2
10 + s

10− s

1− s

1 + s

(c)(ii) Required feedback gain is k = 32.

(d)(i)

K(s) = 0.32
(s− 1)(s+ 10)

(s+ 1)(s− 10)
.


