
4F1 Solutions 2022

1. (a) (i) ki = 0. The characteristic equation is: s2 + kds + kp + 1. A
necessary and sufficient condition for closed-loop stability is:
kd > 0 and kp > −1.

(ii) ki 6= 0. The characteristic equation is: s3+kds
2+(kp+1)s+ki.

A necessary and sufficient condition for closed-loop stability
is: kd > 0, kp > −1, ki > 0 and kd(kp + 1) > ki. [20%]

(b)

[15%]

(iii) Closed-loop stable for k > 0; 2 RHP poles for −1 < k < 0; 1
RHP pole for k < −1. [5%]

(c)

[15%]

(iii) 2 RHP poles for k > 0; 1 RHP pole for k < 0. [5%]
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(d) (i) Since K(s) can’t have any zeros at s = ±j because of internal
stability S(j) = 0. Since K(s) has bounded high frequency
gain S(∞) = 1. [10%]

(ii) Since G(s)K(s) has at least second order roll-off at high fre-
quency due to K(s) having bounded high frequency gain∫ ∞

0

ln |S(jω)| dω = 0.

Hence there must be a frequency ω0 such that |S(jω0)| > 1. [15%]

(iii) Solving for K(s) algebraically from the given S(s) gives

1 + G(s)K(s) =
(s + 1)2

s2 + 1

which implies K(s) = 2s, which is a differentiator. It sta-
bilises G(s) but does not have bounded high frequency gain.
Note also that

|S(jω)| = |1− ω2|
ω2 + 1

≤ 1

for all ω and hence Part (d)(ii) no longer holds if the high
frequency gain requirement on K(s) is removed. [15%]

Assessor’s comment. The least popular question. Almost all candidates
successfully completed 1(a). Most candidates managed to produce correct
Nyquist diagrams in 1(b)(ii) but less so for 1(c)(ii). Part (d) was well done
except for (d)(iii) with few correctly checking the magnitude bound and
recognising that a non-proper controller was needed.
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2 (a) If no current enters the inverting terminal, the current through Z1

equals the current through Z2. Hence, in the Laplace domain,

v̄1 − v̄

Z1

=
v̄ − v̄2
Z2

from which the result follows. [10%]

(b) Dividing the equation in (a) by Z1 gives

v̄2 +
Z2

Z1

v̄1 =
Z1 + Z2

Z1

v̄.

which is the equation satisfied at the summing junction in the
block diagram. [15%]

(c) The transfer function relating −v̄2 to v̄1 is given by:

6
1000

10s + 1001

[15%]

(d) Let L(s) = Z1G/(Z1 + Z2) and T = L/(1 + L). Then

robust stability⇔ |T (jω)| < 1

h(ω)

for all ω. [15%]
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(e) Note that

T (jω) =
1000

10jω + 1001

which is less than one in magnitude for all ω whereas h(jω)−1 > 1
for all omega. Hence the op amp circuit is robustly stable. [15%]

(f) (i)
Z1

Z1 + Z2

=
s + 300

21s + 700
=

1

7

s + 300

3s + 100

which is a lag compensator with maximum lag at ω = 100
rad/sec. [10%]

(ii)

L =
s + 300

3s + 100

1000

10s + 1

so the phase is between 0o and −180o and hence the loop is
stable by the Nyquist stability criterion. [10%]

(iii) Note that |L(j100)| = 1.00 and ∠L(j100)| = −143o so PM=37o.
This will make T (j100) comfortably larger than one. In fact:
T (j100) = 1.5788 whereas h(100)−1 = 1.407 so the op amp
circuit is not robustly stable. [10%]

Assessor’s comment. 2(a) was easily done by the majority of candidates
but the verification of the block diagram in 2(b) received convoluted at-
tempts with many candidates not appreciating that the question just reduces
to checking that the equation at the summing junction is satisfied. In the
remaining question parts most candidates understood well what was required
and generally marks were lost from inaccuracies rather than misunderstand-
ings.
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3 (a) (i)

G(s) = Gm(s)Bp(s)Bz(s) =
100(1 + s)2

s(10 + s)2
10 + s

10− s

1− s

1 + s

[10%]

(ii) The loop gain will need to be larger than one around the
frequency of the RHP pole (ω = 10 rad/sec) and smaller than
one around the frequency of the RHP zero (ω = 1 rad/sec).
It will also need to be larger than one at ω = 0 because of the
pole at the origin. A challenging loop shape! [15%]

(b) (i) With no poles or zeros added in the right half plane there are
branches of the root-locus trapped in the RHP as shown in
the figure, either the blue or the red line according to the sign
of the feedback gain. Additional RHP zeros don’t improve
the situation. Breakaway points only change the number of
poles on the axis by an even number.

[10%]

(ii) With a single pole added to the right of the zero it is now
possible for the pair of poles to break away and move towards
the LHP. But consider the real axis rule. If the two poles move
together then the pole at the origin moves to the right (blue
line in the figure) otherwise the red line is on the root-locus.
Again the situation is not improved by breakaway points.
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[15%]

(c) (i)

[15%]

(ii) We find

G1(−2) =
(−3)2

−2(−12)2
=
−1

32
.

thus the required feedback gain is k = 32. [10%]
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(d) (i) To find a stabilising K(s) solve:

G(s)K(s) = 32
(s− 1)2

s(s− 10)2

which gives

K(s) = 0.32
(s− 1)(s + 10)

(s + 1)(s− 10)
.

There are no RHP pole-zero cancellations between G(s) and
K(s) so this is a stabilising controller. [10%]

(ii)

Note loop shape of form predicted in (a)(ii). [15%]

Note (not required by candidates): the choice of cart velocity as the only
measurement makes the feedback control very difficult (though it does serve
as an excellent illustration of the difficulties of non-conventional loop-shapes).
State feedback makes this problem a lot easier - see 3F2 lab experiment.

Assessor’s comment. A popular question with some parts consistently well
done but others causing difficulties. 3(a)(ii) was often poorly answered with
candidates not grasping that a non-conventional loop shape was implied. A
majority of candidates found 3(b)(ii) difficult though there were some nice
solutions. Part (c) was generally well done, and (d) mostly well done.

7



Figure 1: Computer plot for 3(c)(i).

Figure 2: Computer plot for 3(d)(ii).
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M.C. Smith, 5 May 2022
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