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ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2023 2 to 3.40

Module 4F1

CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4F1 Formulae sheet (3 pages)
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Figure 1 shows the locus of G( jω) for positive ω in various portions of the G-plane
for a stable transfer function G(s) satisfying |G( jω)| → 0 as ω → ∞. Figures 1(b)-(d)
additionally show the image of a rectangular grid in the s-plane. For s = σ + jω the
images for σ = −0.6,−0.5, . . . , 0.6 (at intervals of 0.1) and for ω = 2.5, 3.0, . . . , 9.0 (at
intervals of 0.5) are shown as (unlabelled) dashed lines. G( jω) intersects the real axis at
exactly the points: −4,−0.625, 100.

(a) Use the Nyquist stability criterion to determine the range of k (both positive and
negative) for which the closed-loop system is stable with constant gain negative feedback
k. [10%]

(b) Estimate the closed-loop pole locations near to the imaginary axis for constant gain
negative feedback with values k = 1

6,
1
5,

1
4,

1
3,

1
2,

2
3, 1, 8

5, 2, 3. [25%]

(c) Use your answer to Part (b) to sketch a portion of the root-locus diagram for G(s). [15%]

(d) What is the gain margin in decibels if negative feedback of k = 3 is applied? Explain
the disadvantage of this choice of feedback gain. [10%]

(e) Suggest values of α and ωc so that G(s) is stabilised (in the negative feedback
convention) by

K1(s) = k
αs + ωc
s + ωcα

for all k > 0. [20%]

(f) The compensator K1(s) of Part (e) is selected with a proposed value of k = 3.
Suggest a further stage of compensation which would allow L(0) = 300, where L(s) is
the return ratio of the feedback loop, without increasing the high frequency loop gain and
while maintaining the property that closed loop stability is achieved for any k > 0. [20%]
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Fig. 1
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2 (a) A simplified (and normalised) linear model for a bicycle has a transfer function
from steering angle input to tilt angle equal to:

G1(s) =
s + V
s2 − 1

where V is the forward velocity. By considering a compensator of the form

K(s) = k
s + 1
s + V

for some constant k, show that the bicycle may be controlled so that |S( jω)| ≤ 1 for all ω,
where S(s) is the sensitivity function. [15%]

(b) It is desired to study the control of a rear-wheel steered bicycle using the simplified
model of Part (a) but with the sign of the velocity reversed. Accordingly the transfer
function is modified to:

G2(s) =
s − V
s2 − 1

where V is the forward velocity of this bicycle.

(i) Consider the transfer function

L0(s) =
s − V

(s − 1)(s + b)

for V > 1 and b > 0. Show that there is a breakaway point of the root-locus for
L0(s) in the left half-plane if and only if b − Vb + V < 0, or equivalently

b >
V

V − 1
,

and sketch the root-locus for positive and negative gain k (with the usual negative
feedback configuration) when this condition holds. [20%]

(ii) Deduce that there is a stable, stabilising compensator for G2(s) when V > 1
and find such a compensator when V = 2. [15%]

(iii) Using root-locus considerations, or otherwise, show that G2(s) cannot be
stabilised with a stable compensator K(s) when 0 < V < 1. [15%]

(iv) Express the transfer-function in the form

G2(s) = Gm(s)Bp(s)Bz(s)

where Bp(s) is a pole-type all-pass function with Bp(0) = 1, Bz(s) is a zero-type
all-pass function with Bz(0) = 1, and Gm(s) has no poles or zeros with Re(s) > 0. [10%]
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(v) With reference to the phase of Bz( jω) for differing values of V , and with the
aid of suitable Bode plots, explain how the difficulty of control of G2(s) relates to
the value of V . [15%]

(vi) What advice would you give to a person who is attempting to learn to ride a
rear-wheel steered bicycle? [10%]
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3 An electromagnetic levitation system is required to achieve accurate position control
in a confined space. The transfer function of the system from actuator input to position is
given by

G(s) =
1

(s − 4)(s + 1)
.

(a) For a compensator of the form K0(s) = k(s+z)/(s+p), by considering the asymptote
centre and asymptotic behaviour of the root-locus, or otherwise, find conditions on z and
p so that G(s) is stabilised for large k in a negative feedback configuration. [20%]

(b) A lead compensator in the form K1(s) = (s + 1)/(s + 10) is selected together with
a proportional-plus-integral controller of the form K2(s) = k(s + a)/s for some positive
constants k and a, to form an overall compensator in the form K(s) = K1(s)K2(s). Use
the Routh-Hurwitz stability criterion to find necessary and sufficient conditions on k and
a for closed-loop stability in the standard negative feedback configuration. [Hint: the root
at s = −1 can be factored out.] [15%]

(c) Let e(t) = r(t) − y(t) be the error signal between reference input r(t) and position
output y(t). Suppose a stabilising pre-compensator K(s) of the form suggested in Part (b)
is selected.

(i) For r(t) equal to a step input show that E(0) < 0 where E(s) is the Laplace
transform of e(t). [10%]

(ii) Deduce that ∫ ∞
0

e(t)dt < 0.

[10%]

(iii) Explain why this control scheme gives overshoot in y(t) for a step input r(t). [10%]

(d) A two-degree-of-freedom control scheme is desired which has no overshoot in the
step response.

(i) Show that
2

(s + 1)(s + 2)
is a suitable achievable closed-loop transfer-function from r(t) to y(t). [15%]

(ii) Design a control scheme to achieve this closed-loop transfer function. [20%]

END OF PAPER
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Formulae sheet for Module 4F1: Control System Design
To be available during the examination.

1 Terms

For the standard feedback system shown below, the Return-Ratio
Transfer Function L(s) is given by

L(s) = G(s)K(s),

the Sensitivity Function S(s) is given by

S(s) =
1

1 +G(s)K(s)

and the Complementary Sensitivity Function T (s) is given by

T (s) =
G(s)K(s)

1 +G(s)K(s)

G(s)

K(s)

w̄(s)

ȳ(s)

v̄(s)

✲ ✲ ✲ ✲

✛✛

❄

✻

❄

❡

-
+ ❡+

+

❡
+

+

The closed-loop system is called Internally Stable if each of the four
closed-loop transfer functions

1

1 +G(s)K(s)
,

G(s)K(s)

1 +G(s)K(s)
,

K(s)

1 +G(s)K(s)
,

G(s)

1 +G(s)K(s)

are stable (which is equivalent to S(s) being stable and there being no right
half plane pole/zero cancellations between G(s) and K(s)).
A transfer function is called real-rational if it can be written as the ratio of
two polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

K(s) = α
s+ ωc/α

s+ ωcα
, α > 1

achieves its maximum phase advance at ω = ωc, and satisfies:

|K(jωc)| = 1, and 6 K(jωc) = 2 arctanα− 90◦.
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3 The Bode Gain/Phase Relationship

If

1. L(s) is a real-rational function of s,

2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and

3. satisfies the normalization condition L(0) > 0.

then

6 L(jω0) =
1

π

∫ ∞

−∞

d

dv
log |L(jω0e

v)| log coth
|v|

2
dv

Note that

log coth
|v|

2
= log

∣

∣

∣

∣

ω + ω0

ω − ω0
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∣

∣

∣
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Figure 1:

If the slope of L(jω) is approximately constant for a sufficiently wide range
of frequencies around ω = ω0 we get the approximate form of the Bode
Gain/Phase Relationship

6 L(jω0) ≈
π

2

d log |L(jω0e
v)|

dv

∣

∣

∣

∣

v=0

.
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4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in
Re(s) > 0, then if s0 = σ0 + jω0 with σ0 > 0

logH(s0) =
1

π

∫ ∞

−∞

σ0

σ2
0 + (ω − ω0)2

logH(jω) dω

and

log |H(s0)| =
1

π

∫ ∞

−∞

cosh v cos θ

sinh2 v + cos2 θ
log |H

(

j|s0|e
v
)

| dv

where v = log
(

ω

|s0|

)

and θ = 6 (s0). Note that, if s0 is real, so 6 s0 = 0, then

cosh v cos θ

sinh2 v + cos2 θ
=

1

cosh v
.

We define

Pθ(v) =
cosh v cos θ

sinh2 v + cos2 θ
and give graphs of Pθ below.
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The indefinite integral is given by
∫

Pθ(v) dv = arctan

(

sinh v

cos θ

)

and
1

π

∫ ∞

−∞

Pθ(v) dv = 1 for all θ.

G. Vinnicombe
M.C. Smith

November 2022

3


