4F1 Solutions 2024

(a) (i) The positive and negative frequency portion of the Nyquist
contour I, map to the identical s-plane contour. There are no
(two clockwise) encirclements of —1/k for k > 0 (resp. k < 0).
Hence there are no (resp. two) closed-loop poles in the RHP

for k> 0 (resp. k < 0).
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(ii) |G(jw)| = 1 if and only if 2|w| = |1 — w?|, i.e.
wWt2w—1=0orw? —2w—1=0

with positive solutions w; = —1+ V2 and wy = 1+ /2. From
the figure it is the largest solution that causes instability when
a time delay is introduced. Smallest destabilising time delay
T satisfies woT' = 7/2 which gives "= 0.65 seconds.

(b) (i) Let Ly = KoGoFy and T = Lo/(1 + Lo). Then standard
bookwork shows that a necessary and sufficient condition for
the feedback system to be internally stable for all stable A(s)
satisfying |A(jw)| < h(w) is that

h(w) < |T(jw)|™

for all w.
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(ii) Solving for A(s) gives

(k—2)s+ 5k — 2a

A= 2(s+a)

which after taking the magnitude is maximised with a = 3,

ie.
62w? + (4 + 50)?

4(w?+9)

[AQw)l* <

from which the result follows.

(iii) Lo(s) is equal to G(s) from Part (a) and hence T'(s) = 2s/(s+
1)2. Note that |T(jw)| = 2|w|/(1 + w?) hence |T(jw)|™! > 1
for all w. Also h(w) < 1 for all w when 6 = 0. Hence, clearly,
the required inequality is satisfied for all w.

(iv) The sensitivity function S(s) = 1/(1 + Ly(s)) (it doesn’t
matter that the variations are in K rather than G). Hence
S(0) = 1 so there is no sensitivity reduction. This persists
as long as Lo(0) = 0 which comes from the rate gyro. Com-
pensation can’t change this. The only solution would be to
change this block, for example by adding a proportional term
to the rate gyro feedback, but this means finding a way to
measure the attitude.

Examiner’s comment. Sketching the Nyquist diagram for this sim-
ple transfer-function caused difficulties for many candidates with few
able to combine the large semi-circles from the indentations around
the imaginary axis poles with the imaginary axis sections. Few candi-
dates correctly selected the relevant frequency in 1(a)(ii) to calculate
the smallest time delay. Part (b)(i) and (iv) were generally well done
but (ii) and (iii) had a lot of imprecise manipulations.
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2.

(a) (i) Annotating by hand with straight-line approximations:
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(ii) This suggests an all-pass factor of the form

a—Ss
a+s
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with a = 4. True value was a = 3. See accurate computer-

generated plot overleaf.



60

40

Gain (dB)

107" 10° 10’ 102 103
Frequency (rad/sec)

]
/

™~

(iii)
(b) ()

107! 10° 10" 102 103
Frequency (rad/sec)

Difficult to achieve a gain crossover frequency much greater
than 3 rad/sec.

Since the phase of G(jw) is lower than —135° for w > 1 a phase
lag compensator alone can never satisfy spec C. A constant
gain compensator with gain around 2 can meet both specs A
and D (just!). A phase lead compensator, which is needed
to achieve spec C, always has higher gain at high frequency
compared to low frequency. Once this is introduced specs A
and D can’t be achieved simultaneously.
s+1/a

A phase lead compensator Ki(s) = a= =4~ with a = 1.7 gives

29° of peak phase advance at w = 1 allowing spec C to be
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Gain (dB)

Phase (degrees)

satisfied without violating spec D. A phase lag compensator
with break frequencies place at low enough frequency so as not
to compromise spec C can meet spec A, e.g. Ks(s) = Hfﬂ—(}(lza)

to give a final compensator K(s) = K;(s)K>(s) as shown.
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Examiner’s comment. This question was generally very well done by
most candidates who showed an excellent grasp of the Bode gain-phase
relationships and the purpose and use of lead and lag compensators.
Most candidates produced excellent final designs for Part (b)(ii).



3.

(a) (i)

(iii)

(iii)

A. Write G(s) = G1(s)/(s — 1) where

s24+0.1s+1

$24+0.1s+4

Then T'(s) = G1(s)K(s)/((s = 1+ G1(s)K(s)) and K(1) #0
because of internal stability, also G1(1) # 0 so T(1) = 1;

B. T'(s) has no poles in Re(s) > 0 because of internal stabil-
ity and no zeros in Re(s) > 0 because K (s) has no zeros in
Re(s) > 0 . Hence log(7'(s)) is analytic in Re(s) > 0.

From Poisson’s formula (data sheet)

Gl(S) =

0=log(r() =1 [

T ) o 1+ w?

log(T' (jw))dw.

Taking real parts of the right hand side and using symmetry
gives the result.

The formula shows that |7'(jw)| cannot be less than one at
all frequencies. The waterbed effect comes into play, i.e. if a
design tries to push down |T'(jw)| in some frequency range it
will force it to be larger in others.

Such a design means choosing K (s) = kG1(s)™! which means
that the lightly damped poles and zeros in the plant are can-
celled by the controller. Some disadvantages are:

A. Input disturbances could excite the lightly damped poles
in the plant with the response seen at the output.

B. Because a lightly damped pair of poles is introduced into
the controller, sensor noise could be amplified at those
frequencies at the plant input.

C. Opportunity is lost to increase the damping of the lightly
damped modes.

D. The exact cancellation approach could be susceptible to
model errors.

Real-axis rule together with knowledge of breakaway points
suggests the general form of the root-locus. Further analysis
could be carried out to check that there is no incursion of the
lightly damped poles into the RHP. Angle condition could be
used to find angle of departure of lightly damped poles.
Closed-loop poles are furthest to the left when

k = —1/G(—0.65) = 5.3 approx
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(ii) For any stabilising k& (we need k > 4) let

e
1+ kG

and define H = T71/(s+ 1) in the following block diagram.



Examiner’s comment. Part (a)(i)B was poorly understood by many
candidates, though most completed (a)(ii) and (iii) correctly. Around
half of the candidates didn’t grasp that the main issue in (a)(iv) was
the cancellation of lightly-damped plant poles and zeros. Both parts of
Part (b) were generally very well done.

M.C. Smith, 5 May 2024
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