EGT3
ENGINEERING TRIPOS PART IIB

Friday 25 April 20149.30 to 11

Module 4F1

CONTROL SYSTEM DESIGN

Answer not more than two questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Attachment: 4F1 Formulae sheet (3 pages).
Supplementary pages: one extra copy of Fig. 1 (Question 1) and two extra copies of Fig. 2 (Question 2)
Engineering Data Book

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version MCS/4

1 (a) (i) Explain how the Nyquist diagram and root-locus diagram for a system can be defined in terms of a mapping between complex planes.
(ii) State the definition and property of a conformal mapping. Explain the use of the property in the construction of Nyquist and root-locus diagrams.
(b) A transfer function $G(s)$ has a pole of multiplicity one at the origin and exactly one pole satisfying $\operatorname{Re}(s)>0$. Fig. 1 shows part of the frequency response $G(j \omega)$ for a range of positive frequencies with specific frequencies indicated: $\omega=4,5, \ldots, 9 \mathrm{rad} \mathrm{s}^{-1}$. Constant gain feedback k is applied to the system with the negative feedback convention.
(i) Sketch the complete Nyquist diagram for $G(s)$ and use it to determine the number of poles of the closed-loop system in the right half-plane for all values of k both positive and negative.
(ii) By use of a sketch on the extra copy of Fig. 1 estimate the position of any closed-loop poles close to the imaginary axis for $k=1 / 8$ and $k=1 / 10$.
(iii) Provide a sketch of any part of the root-locus diagram which may be deduced from (b)(i) and (b)(ii). What can be said about the location of any zeros of $G(s)$? What can be said about the total number of zeros in relation to the total number of poles of $G(s)$?

An extra copy of Fig. 1 is provided on a separate sheet. This should be handed in with your answers.

Version MCS/4

Fig. 1

Version MCS/4

2 Figure 2 is the Bode diagram of a system with transfer function $G(s)$ for which a compensator $K(s)$ is to be designed. It is known that the system has no poles satisfying $\operatorname{Re}(s)>0$.
(a) (i) Sketch on a copy of Fig. 2 the expected phase of $G(j \omega)$ if $G(s)$ were stable and minimum phase.
(ii) Determine the form of the all-pass part of the transfer function and estimate any associated parameters.
(iii) Comment briefly on any limitations that may be experienced in the design of $K(s)$.
(b) Suppose it is desired to achieve the following specifications for the return ratio $L(s)=G(s) K(s)$:

A: Velocity error constant $K_{v}=10$ where $K_{V}=\lim _{s \rightarrow 0}(s L(s))$;
B: Gain cross-over frequency ω_{c} (i.e. $\left|L\left(j \omega_{c}\right)\right|=1$) satisfying $\omega_{c} \geq 1 \mathrm{rad} \mathrm{s}^{-1}$;
C: Phase margin of at least 45°;
D: $|L(j \omega)| \leq 0.1$ for $\omega \geq 20 \mathrm{rad} \mathrm{s}^{-1}$.
(i) By considering the cases of a lead and lag compensator separately, or otherwise, explain why it is not possible to achieve the specifications using a compensator with one pole and one zero.
(ii) Choose constants $\omega_{1}>0, \omega_{2}>0$ and $\alpha>1$ to show that the specifications A-D can be met with $\omega_{c}=1$ using

$$
K(s)=\left(\frac{s+\omega_{1} \alpha}{s+\omega_{1} / \alpha}\right)\left(\frac{s+\omega_{2} / \alpha}{s+\omega_{2} \alpha}\right) .
$$

Sketch the Bode diagram of $K(s)$ and $G(s) K(s)$ for your design on a copy of Fig. 2.

Two copies of Fig. 2 are provided on separate sheets. These should be handed in with your answers.

Version MCS/4

Fig. 2

Version MCS/4

3 (a) For a plant with transfer function $G(s)$ sketch the block diagram for a two-degree-of-freedom control system. Write down (but do not prove) the conditions which must apply to the transfer function from reference input $r(t)$ to plant output $y(t)$ in any design.
(b) Let $R(s)$ be the transfer function of a stable system. Suppose that $R(s)$ has a right half-plane zero at $s=\alpha$. By considering the definition of the Laplace transform, or otherwise, show that the step response $y(t)$ of the system satisfies

$$
0=\int_{0}^{\infty} y(t) e^{-\alpha t} d t .
$$

(c) A control system is to be designed for the superconducting magnet in a magnetic levitation train (maglev). The transfer function from coil voltage $u(t)$ to vertical displacement $y(t)$ after linearisation and normalisation takes the form:

$$
G(s)=\frac{\omega_{1}^{2}}{s^{2}-\omega_{1}^{2}}
$$

where $\omega_{1}>0$.
(i) Show that this plant can be stabilised by a lead compensator of the form:

$$
K(s)=\frac{k\left(s+\omega_{1}\right)}{s+b} .
$$

(ii) Hence, or otherwise, design a two-degree-of-freedom control system for which the transfer function from reference input $r(t)$ to plant output $y(t)$ is given by:

$$
T_{r \rightarrow y}=\frac{\omega_{1}^{3}}{\left(s+\omega_{1}\right)^{3}} .
$$

(iii) Find the transfer function $T_{r \rightarrow u}$ from reference input $r(t)$ to plant input $u(t)$ for any design satisfying part (c)(ii). Find the initial slope and final value of the step response of $T_{r \rightarrow u}$. Sketch the form of the step response without further calculation. [20\%]
(iv) Prove that $T_{r \rightarrow u}$ has a zero at $s=\omega_{1}$ for any two-degree-of-freedom design and explain the consequences of this fact making use of part (b) or otherwise.

END OF PAPER

\square

EGT3
ENGINEERING TRIPOS PART IIB
Friday 25 April 2014, Module 4F1, Question 1.

Extra copy of Fig. 1: Nyquist diagram for Question 1.
\square

EGT3

ENGINEERING TRIPOS PART IIB

Friday 25 April 2014, Module 4F1, Question 2.

Extra copy of Fig. 2: Bode diagram for Question 2.
\qquad

Extra copy of Fig. 2: Bode diagram for Question 2.

