4F3 cribs

Question 1

(a.i) The motion of the robot is summarised by the following update function f :

- $f(i, j, \mathbf{n})=(i, j)$ (standing still)
- $f(i, j, \mathbf{u})=(i-1, j)$ if $i>1 ; f(i, j, \mathbf{d})=(i+1, j)$ if $i<4$ (up and down);
- $f(i, j, \mathbf{r})=(i, j+1)$ if $j<4 ; f(i, j, \mathbf{l})=(i, j-1)$ if $j>1$ (left and right).

Stage cost:

- given the assumption that every motion take about 1 second, a minimum time path corresponds to a path that reaches the end position with a minimum number of actions. To achieve this, we associate a positive stage cost to every state and action: $c(i, j, \mathbf{a})=1$ for all $(i, j) \in X$ and all $\mathbf{a} \in U$;
- the robot will not move to a shaded box if the cost of such move is high. Thus, we change the stage cost as follows: $c(4,1, \mathbf{r})=c(4,3, \mathbf{l})=c(3,1, \mathbf{r})=$ $c(3,3, \mathbf{l})=c(2,2, \mathbf{d})=c(2,3, \mathbf{u})=c(1,2, \mathbf{r})=c(1,4, \mathbf{l})=10$.

Terminal cost:

- ending in the wrong position must be penalized therefore we take $J_{h}(i, j)=100$ for all $(i, j) \in X$ but $J_{h}(1,4)=0$.
(a.ii) The recursive updates of the cost-to-go are represented as the following sequence of checkboards

$$
\begin{aligned}
\begin{array}{|c|c|c|c|}
\hline 100 & 100 & 100 & 0 \\
\hline 100 & 100 & 100 & 100 \\
\hline 100 & 100 & 100 & 100 \\
\hline 100 & 100 & 100 & 100 \\
\hline
\end{array} \rightarrow \begin{array}{|c|c|c|c|}
\hline 101 & 101 & 1 & 0 \\
\hline 101 & 101 & 101 & 1 \\
\hline 101 & 101 & 101 & 101 \\
\hline 101 & 101 & 101 & 101 \\
\hline 12 & 11 & 1 & 0 \\
\hline 103 & 3 & 2 & 1 \\
\hline 103 & 103 & 3 & 2 \\
\hline 103 & 103 & 103 & 3 \\
\hline
\end{array} \rightarrow \begin{array}{|c|c|c|c|c|}
\hline 12 & 4 & 1 & 0 \\
\hline 4 & 3 & 2 & 1 \\
\hline 102 & 102 & 2 & 1 \\
\hline 102 & 4 & 3 & 2 \\
\hline 104 & 104 & 4 & 3 \\
\hline 102 & 102 & 102 & 102 & 2 \\
\hline
\end{array} \rightarrow \begin{array}{|c|c|c|c|c|}
\hline 5 & 4 & 1 & 0 \\
\hline 4 & 3 & 2 & 1 \\
\hline 5 & 4 & 3 & 2 \\
\hline 105 & 5 & 4 & 3 \\
\hline 5 & 4 & 1 & 0 \\
\hline 4 & 3 & 2 & 1 \\
\hline 5 & 4 & 3 & 2 \\
\hline 6 & 5 & 4 & 3 \\
\hline
\end{array} \\
\hline
\end{aligned}
$$

(a.iii) Starting from S, the optimal input sequence is

$$
\mathbf{u}, \mathbf{u}, \mathbf{r}, \mathbf{r}, \mathbf{r}, \mathbf{u}
$$

The optimal trajectory is

$$
S=(4,1) \rightarrow(3,1) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(2,3) \rightarrow(2,4) \rightarrow(1,4)=E .
$$

5	4	1	2
4	3	2	1
	5	4	3

The optimal moves are given by $\operatorname{argmin}_{\mathbf{a} \in U} c(x, \mathbf{a})+V(f(x, \mathbf{a}))$. Specifically,

- $x=(4,1): c(4,1, \mathbf{u})+V(3,1)=1+5<c(4,1, \mathbf{r})+V(4,2)=10+5$;
- $x=(3,1): c(3,1, \mathbf{u})+V(2,1)=1+4<c(3,1, \mathbf{d})+V(4,1)=1+6<$ $c(3,1, \mathbf{r})+V(3,2)=10+4$;
- $x=(2,1): c(2,1, \mathbf{r})+V(2,2)=1+3<c(2,1, \mathbf{d})+V(3,1)=1+5=$ $c(2,1, \mathbf{u})+V(1,1)$;
- ...

Adding rows at the top and at the bottom does not change the optimal trajectory since the cost-to-go remains unchanged. Any different move would be more expensive.

(bi) This is extensively discussed in Example 2 of the handout on Optimal Control. Define $\tilde{z}=z-z_{E}$ and $\tilde{u}=u$. The minimum energy problem can be solved as the limit of the quadratic cost

$$
J(\tilde{z}(0), u(\cdot))=\int_{0}^{6} u(t)^{2} d t+\frac{1}{\varepsilon} \tilde{z}(6)^{2}
$$

for $\varepsilon \rightarrow 0$. Thus, we need to solve the Riccati equation

$$
-\dot{X}=Q+X A+A^{T} X-X B R^{-1} B^{T} X
$$

for $Q=A=0$ and $R=B=1$. Note that X is a scalar. This leads to the equation

$$
\dot{X}=X^{2}
$$

that we need to integrate backward from $X(6)=\frac{1}{\varepsilon}$. The minimum energy is then given by

$$
J\left(\tilde{z}(0), u^{*}(\cdot)\right)=\tilde{z}(0)^{2} X(0)=\left(z_{S}-z_{E}\right)^{2} X(0)=36 X(0)
$$

(b.ii) As in Example 2 in the handout, to make the computation easy we take $Y=$ $-X^{-1}$ and we use the identity $-\dot{X}=\frac{d}{d t}\left(Y^{-1}\right)=-Y^{-1} \dot{Y} Y^{-1}$ to rewrite the Riccati equation in (bi) as

$$
Y^{-1} \dot{Y} Y^{-1}=Y^{-1} Y^{-1} \quad \rightarrow \quad \dot{Y}=1
$$

Its solution at time T satisfies

$$
Y(T)=T+Y(0) \quad \rightarrow \quad Y(0)=Y(T)-T \quad \rightarrow \quad X(0)=\frac{1}{T-Y(T)}
$$

Taking $T=6$ and $Y(T)=\varepsilon$, for $\varepsilon \rightarrow 0$ we get

$$
Y(0)=-6 \quad \rightarrow \quad X(0)=\frac{1}{6}
$$

The optimal cost is thus

$$
J\left(z_{S}-z_{E}, u^{*}(\cdot)\right)=\left(z_{S}-z_{E}\right)^{2} X(0)=6
$$

for the optimal control

$$
u^{*}(t)=-B^{T} X(t) \tilde{z}=B^{T} Y^{-1}(t) \tilde{z}=\frac{1}{(6-t)}\left(z_{E}-z(t)\right)
$$

Question 2

(a.i) $\left\|T_{w \rightarrow y}\right\|_{2}=\sqrt{2 \pi \operatorname{trace}\left(B^{T} L B\right)}$ where $L=L^{T}>0$ is the solution to

$$
A_{(k, c)}^{T} L+L A_{(k, c)}+C^{T} C=0
$$

for

$$
A_{(k, c)}=\left[\begin{array}{cc}
0 & 1 \\
-k & -c
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

For $L=\left[\begin{array}{rr}\ell_{1} & \ell_{3} \\ \ell_{3} & \ell_{2}\end{array}\right]$ we have

$$
0=A_{(k, c)}^{T} L+L A_{(k, c)}+C^{T} C=\left[\begin{array}{cc}
-2 \ell_{3}+1 & \ell_{1}-\ell_{3}-\ell_{2} \\
\ell_{1}-\ell_{3}-\ell_{2} & 2\left(\ell_{3}-\ell_{2}\right)
\end{array}\right]
$$

from which

$$
\ell_{3}=\frac{1}{2} \quad \ell_{2}=\frac{1}{2} \quad \ell_{1}=1
$$

Thus,

$$
\left\|T_{w \rightarrow y}\right\|_{2}=\sqrt{2 \pi \operatorname{trace}\left(B^{T} L B\right)}=\sqrt{2 \pi \ell_{2}}=\sqrt{\pi}
$$

- In terms of the impulse response of the system, $g_{w \rightarrow y}(t)$, we have $\left\|g_{w \rightarrow y}(t)\right\|=$ $\frac{1}{\sqrt{2 \pi}}\left\|T_{w \rightarrow y}\right\|_{2}$ therefore the 2-norm provides a bound on the energy of the impulse response.
- In terms of $\|y\|_{\infty}$, we have $\|y\|_{\infty} \leq \frac{1}{\sqrt{2 \pi}}\left\|T_{w \rightarrow y}\right\|_{2}\|u\|_{2}$. Thus, the 2-norm provides a point-wise bound on the largest displacement of the shock absorber for input perturbations of finite energy,
(a.ii) The solution corresponds to the state-feedback \mathcal{H}_{2} optimal control. We compute the solution $X=X^{T}>0$ of the CARE

$$
0=X A+A^{T} X+C^{T} C-X B B^{T} X
$$

that also guarantees stability of $A-B B^{T} X$. Then, $u=-B^{T} X x$ is the optimal control, that is, optimal stiffness and damping correspond to $\left[\begin{array}{ll}k & c\end{array}\right]=B^{T} X$.
For $X=\left[\begin{array}{ll}X_{1} & X_{3} \\ X_{3} & X_{2}\end{array}\right]$ the Riccati equation reads

$$
0=\left[\begin{array}{cc}
1-X_{3}^{2} & X_{1}-X_{3} X_{2} \\
X_{1}-X_{3} X_{2} & 2 X_{3}-X_{2}^{2}
\end{array}\right]
$$

from which

- $X_{3}= \pm 1$;
- $X_{2}=\sqrt{2 X_{3}}$. This must be real and positive otherwise X is not positive definite. Thus, $X_{3}=1$ and $X_{2}=\sqrt{2}$.
- $X_{1}=X_{3} X_{2}=\sqrt{2}$.

This solution of the Riccati equation gurantees that $A-B B^{T} X$ is stable. Thus,

$$
\left[\begin{array}{ll}
k & c
\end{array}\right]=B^{T} X=\left[\begin{array}{ll}
1 & \sqrt{2}
\end{array}\right] .
$$

For the optimal parameters (not required, provided for completeness),

$$
\left\|T_{w \rightarrow z}\right\|_{2}=\sqrt{2 \pi \operatorname{trace}\left(B^{T} X B\right)}=\sqrt{2 \pi X_{3}}=\sqrt{2 \pi}
$$

(a.iii)

$$
\left\|T_{w \rightarrow y}\right\|_{2}=\left\|\left[\begin{array}{c}
T_{w \rightarrow y} \\
0
\end{array}\right]\right\| \leq\left\|\left[\begin{array}{c}
T_{w \rightarrow y} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
T_{w \rightarrow u}
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
T_{w \rightarrow y} \\
T_{w \rightarrow u}
\end{array}\right]\right\|=\left\|T_{w \rightarrow z}\right\|_{2} .
$$

Repeating the computation in (a.i) for $k=1$ and $c=\sqrt{2}$ we get

$$
L=\left[\begin{array}{ll}
\ell_{1} & \ell_{3} \\
\ell_{3} & \ell_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2 \sqrt{2}} & \frac{1}{2} \\
\frac{1}{2} . & \frac{1}{2 \sqrt{2}}
\end{array}\right]
$$

Thus,

$$
\left\|T_{w \rightarrow y}\right\|_{2}=\sqrt{2 \pi \ell_{2}}=\sqrt{\frac{\pi}{\sqrt{2}}}<\sqrt{\pi}
$$

(bi) For $k=1$ and for any $c \geq 2$ we have

$$
T_{w \rightarrow y}(s)=C(s I-A)^{-1} B=\frac{1}{s(s+c)+1}=\frac{1}{s^{2}+c s+1} .
$$

For $c \geq 2$ its poles are real and with negative real part since $s=\frac{-c \pm \sqrt{c^{2}-4}}{2}$.
It follows that

$$
\left|T_{w \rightarrow y}(j \omega)\right| \leq\left|T_{w \rightarrow y}(j 0)\right|=1 \text { for all } c \geq 2
$$

(b.ii) Define $K=\left[\begin{array}{cc}-k & -c\end{array}\right]$. We want to find the matrix K that minimizes the gain from the input w to the output z of the system

$$
\dot{x}=(A+B K)+B w \quad z=\left[\begin{array}{c}
C \\
K
\end{array}\right] x .
$$

This is achieved by solving the Lyapunov inequality $\dot{V} \leq-z^{2}+\gamma^{2} w^{2}$ for $V=x^{T} X x$ while minimizing $\gamma>0$. The Lyapunov inequality leads to the matrix inequality

$$
\left[\begin{array}{cc}
X(A+B K)+(A+B K)^{T} X+\left[\begin{array}{ll}
C^{T} & K^{T}
\end{array}\right]\left[\begin{array}{c}
C \\
K
\end{array}\right] & X B \\
B^{T} X & -\gamma^{2} I
\end{array}\right] \leq 0
$$

For $Y=X^{-1}$ we can rewrite

$$
\left[\begin{array}{cc}
(A+B K) Y+Y(A+B K)^{T}+\left[\begin{array}{ll}
Y C^{T} & Y K^{T}
\end{array}\right]\left[\begin{array}{c}
C Y \\
K Y
\end{array}\right] & B \\
B^{T} & -\gamma^{2} I
\end{array}\right] \leq 0
$$

and using $Z=K Y$ we get

$$
\left[\begin{array}{cc}
A Y+B Z+Y A^{T}+Z^{T} B^{T}+\left[\begin{array}{ll}
Y C^{T} & Z^{T}
\end{array}\right]\left[\begin{array}{c}
C Y \\
Z
\end{array}\right] & B \\
B^{T} & \\
& -\gamma^{2} I
\end{array}\right] \leq 0
$$

Finally, using the Schur complement,

$$
\left[\begin{array}{ccc}
A Y+B Z+Y A^{T}+Z^{T} B^{T} & B & {\left[\begin{array}{cc}
Y C^{T} & Z^{T}
\end{array}\right]} \\
B^{T} & -\gamma^{2} I & 0 \\
{\left[\begin{array}{c}
C Y \\
Z
\end{array}\right]} & 0 & -I
\end{array}\right] \leq 0
$$

which is a linear matrix inequality in the unknowns $Y=Y^{T}>0, Z$, and $\gamma>0$. Minimizing over γ returns Y and Z from which the minimizing \mathcal{H}_{∞} state-feedback controller reads

$$
u=K x=Z Y^{-1} x
$$

20%
3)

$$
J_{1}=\left|2 x+u_{0}\right|+\left|4 x+2 u_{0}+u_{1}\right|+\alpha\left|u_{0}\right|+\alpha\left|u_{1}\right|
$$

If $\alpha>1 \Rightarrow u_{1}^{*}=0$ dse $u_{1}^{*}=-4 x-2 u_{0}$
$\alpha<1$

$$
\begin{aligned}
& \left|2 x+u_{0}\right|+\alpha\left|u_{0}\right|+\alpha\left|4 x+2 u_{0}\right| \\
& =\left|(2+4 \alpha) x+(1+2 \alpha) u_{0}\right|+\alpha\left|u_{0}\right| \\
& 1+2 \alpha>\alpha \Rightarrow \quad u_{0}^{*}=\frac{-(2+4 \alpha)}{(1+2 \alpha)} x=-2 x
\end{aligned}
$$

$$
\begin{gathered}
\alpha>1 \quad \left\lvert\, \begin{array}{l}
6 x+3 u_{0}|+\alpha| u_{0} \mid \\
\alpha>3, u_{0}^{+}=0 \\
\alpha<3
\end{array} \quad \Rightarrow u_{0}^{*}=-2 x\right.
\end{gathered} \quad \Rightarrow u_{0}^{*}=\left\{\begin{array}{cc}
-2 x & \alpha<3 \\
0 & \alpha>3
\end{array}\right.
$$

$$
\begin{aligned}
& J_{2}=\left(2 x+u_{0}\right)^{2}+\left(4 x+2 u_{0}+u_{1}\right)^{2}+\alpha^{2} u_{0}^{2}+\alpha^{2} u_{1}^{2} \\
& \frac{\partial J_{2}}{\partial u_{0}}=2\left(2 x+u_{0}\right)+4\left(4 x+2 u_{0}+u_{1}\right)+2 \alpha^{2} u_{0} \\
& =20 x+\left(10+2 \alpha^{2}\right) u_{0}+4 u_{1}=0 \\
& \frac{\partial J_{2}}{\partial u_{1}}=2\left(4 x+2 u_{0}+u_{1}\right)+2 \alpha^{2} u_{1} \\
& =\begin{array}{l}
8 x+4 u_{0}+\left(2+2 \alpha^{2}\right) u_{1}=0 \\
\frac{8 \cdot 4}{2+22^{2}} x+\frac{16}{2+2 \alpha^{2}} u_{0}+4 u_{1}=0
\end{array} \\
& \left(20-\frac{32}{2+2 \alpha}\right) x+\left(10+2 \alpha^{2}-\frac{16}{2+2 \alpha^{2}}\right) u^{k}=0 \\
& u_{0}^{R}=-\frac{\left(20-\frac{32}{2+2 \alpha^{2}}\right)}{10+2 \alpha^{2}-\frac{16}{2+2 \alpha^{2}}} x \\
& =-\frac{\left(8+40 \alpha^{2}\right)}{4+24 \alpha^{2}+4 \alpha^{2}} x \\
& \alpha=0 \Rightarrow-22 \quad \alpha=1 \Rightarrow \frac{-48}{32}
\end{aligned}
$$

$$
\begin{aligned}
& J_{0}=\max \left(\left|2 x_{0}+u_{0}\right|,\left|4 x_{0}+2 u_{0}+u_{1}\right|, \alpha\left|u_{0}\right|, \alpha\left|u_{1}\right|\right) \\
& 4 x_{0}+2 u_{0}+u_{1}=-\alpha u_{1} \\
& u_{1} \equiv-\frac{4 x_{0}+2 u_{0}}{1+\alpha}=-\frac{2}{1+\alpha}\left(2 x_{0}+u_{0}\right) \\
& \alpha>1-\alpha u_{0}^{*}=2 x_{0}+u_{0}^{t} \Rightarrow u_{0}^{t}=-\frac{2}{1+\alpha} x_{0} \\
& \alpha<1-\alpha u_{0}^{t}=\frac{2}{1+\alpha}\left(2 x_{0}+u_{0}^{t}\right) \Rightarrow \\
& -\left(\alpha^{2}+\alpha+2\right) u_{0}^{*}=4 x_{0} \Rightarrow \quad u_{0}^{d}=-\frac{4}{\alpha^{2}+\alpha+2} x_{0} 50 \%_{0}
\end{aligned}
$$

b) For eade h use above bo minimicy $\cos r$ for $x(x)=x_{0}$ $x(k+1)=x_{1}, x(u+2)=x_{2}$ and iten apply comollen u(x)=n.* ignoviy be u_{1}^{*}. Then mox limespep on by 1 .
if $u(k)=-k x(k)$ den suable for $1<k<3$
Since $x(k+1)=(2-k) x(k)$ \& need $-1<2-k<1$
J_{1} : need $\alpha<3$
J_{2} : need $\frac{8+40 \alpha^{2}}{4+24 \alpha^{2}+4 \alpha^{4}}>1 \Leftrightarrow 4+16 \alpha^{2}>4 \alpha^{4}$

$$
\alpha^{2}<4.82
$$

40%
J_{∞} : need $\alpha<1$

$$
\alpha<2.2
$$

c) The system is oper-loop in scable and so requires a sufficieneds lange input to be stasilyed. Recediy horijocontiol conmes wit no gugraneas a sciabiliay. Over pendizing de size of be ipeut resulis in X_{i}, nov bein achieved.

4 a) sample s, a $5,5^{\prime}, a^{\prime}$

$$
Q(s, a) \leftarrow \leftarrow_{\leftarrow} C_{C}+Q\left(s^{\prime}, a^{\prime}\right)
$$

\& ropear, calce ${ }^{〔}$ somples fow episodes siafring ier ied 4.

b) $) Q(4, \rightarrow 5) \leftarrow 1+Q(5, \rightarrow 6)=\infty$

$$
Q(5, \rightarrow 6) \leftarrow 1+0=1
$$

2) $Q(2, \rightarrow 5) \leftarrow 1+Q(5, \rightarrow 6)=2$
3) $Q(4, \rightarrow 5) \leftarrow 1+Q(5, \rightarrow 6)=2$

4)

$$
\begin{aligned}
& Q(5, \rightarrow 7) \leftarrow 100+Q(4, \rightarrow 5)=102 \\
& Q(4, \rightarrow 5) \in 1+Q(5, \rightarrow 6)=2 \text { (again] }
\end{aligned}
$$

s) $Q(4, \rightarrow 5) \leftarrow 1+Q(5, \rightarrow 7)=102 \Rightarrow$ areoge of $2,2,102 \approx 35$ $Q(5, \rightarrow 7) \in 100+35=135$
$Q(4, \rightarrow) \leqslant 2$ agm \Rightarrow avere $a \quad 2,2,102,2 \geqslant 2730^{\circ} \%$
ii) All a ceous a re greedy exceps fo all $5, \rightarrow 7 \quad 10 \%$
iii) Small $E, 4 \rightarrow 5 \rightarrow 6=2\left(1-\epsilon-e^{2}-\cdots\right)+103 . \epsilon+204 \cdot \epsilon^{2}+\ldots 305 \epsilon^{3}$ $=2+101 \epsilon+202 \epsilon^{2}+303 \epsilon^{3}$
laye $\in, 4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 6=4$

$$
101 \in \approx 2 \quad 6 \approx 0.02 \Rightarrow E^{2} \text { etc simel }
$$

(actinds equal to 0.0171)
c) Q-learing would fïd the optimal pael $4 \rightarrow 5 \rightarrow 6$ fo- all \in but averaige episodic colr wolld be $2+101 c+202 \epsilon^{2} \ldots$ for $20^{\circ} \%$ all E.

