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ENGINEERING TRIPOS PART IIB

Tuesday 03 May 2022 9.30 to 11.10

Module 4F3

AN OPTIMISATION BASED APPROACH TO CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.
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1 We want to solve a path planning problem for a robot moving on the chessboard
represented in Fig. 1a. The robot always occupies a single box and moves u - up, d - down,
l - left, r - right, n - none. Assume that each move takes approximately one second. We
want the robot to move from the starting position, 𝑆, to the end position, 𝐸 , in minimum
time. Shaded boxes represent forbidden regions, where the robot should not enter.

(a) Formulate and solve the path planning problem using dynamic programming. Use
the state space 𝑋 = {(𝑖, 𝑗) | 𝑖 is the box row, 𝑗 is the box column} and the input space
𝑈 = {u, d, l, r, n}.

(i) Define stage cost and terminal cost to solve the path planning problem via
dynamic programming. Explain your choices. [20%]

(ii) Using dynamic programming, show how to find the value function or cost to
go 𝑉 : 𝑋 → R. At each update, show the value of 𝑉 at each chessboard box. [20%]

(iii) Find the optimal input sequence and the optimal trajectory from 𝑆 to 𝐸 . How
would these change if we extended the chessboard with additional rows at the top
and at the bottom? Justify your answers. [15%]

(b) Now that a path has been found, the robot has to navigate it optimally. Consider the
abstract path in Fig. 1b, where the variable 𝑧 denotes the distance along the path, from
𝑧𝑆 to 𝑧𝐸 . The robot motion satisfies the equation ¤𝑧 = 𝑢, where the input 𝑢 represents the
robot’s speed. The energy cost is measured by

∫ 6
0 𝑢(𝑡)2𝑑𝑡.

(i) Show how to find the minimum energy to drive the robot from 𝑧𝑆 to 𝑧𝐸 using
Riccati equations. [20%]

(ii) Compute the optimal cost and optimal control 𝑢∗. [25%]
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Fig. 1
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2 Figure 2 represents a shock absorber with unit mass 𝑀 = 1, spring stiffness 𝑘 , and
damping coefficient 𝑐. The displacement 𝑥1 and the velocity 𝑥2 of the shock absorber
satisfy

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑤 𝐴 =

[
0 1
0 0

]
, 𝐵 =

[
0
1

]
(1)

where 𝑥 =

[
𝑥1 𝑥2

]𝑇
, 𝑢 = −𝑘𝑥1 − 𝑐𝑥2 represents the internal force that spring and

damper exert on the mass 𝑀 , and 𝑤 is an external force acting on the system. The
measured output is 𝑦 = 𝑥1.

M
w

y0

Fig. 2

(a) H2 analysis and control:

(i) Compute the H2 norm of the transfer function from 𝑤 to 𝑦, ‖𝑇𝑤→𝑦 ‖2, for
nominal parameters 𝑘 = 1 and 𝑐 = 1. Explain its significance in terms of the
impulse response of the system and in terms of the system transients measured by
‖𝑦‖∞. [20%]

(ii) Compute the stiffness and damping parameters, 𝑘 and 𝑐, that guarantee optimal

H2 norm ‖𝑇𝑤→𝑧‖2 from the input 𝑤 to the performance output 𝑧 =
[
𝑦 𝑢

]𝑇
. [25%]

(iii) Prove that ‖𝑇𝑤→𝑦 ‖2 ≤ ‖𝑇𝑤→𝑧‖2, which illustrates how optimising the latter
is a way to improve the former (while moderating the control action). Then, in
comparison to your results in part (a) (i), show that 𝑘 and 𝑐 computed in part (a) (ii)
make ‖𝑇𝑤→𝑦 ‖2 smaller. [20%]

(b) H∞ analysis and control:

(i) Show that ‖𝑇𝑤→𝑦 ‖∞ = 1 if 𝑘 = 1 and 𝑐 ≥ 2. [15%]

(ii) Show how to find the values of 𝑘 and 𝑐 that minimise the H∞ norm from 𝑤 to
𝑧 =

[
𝑦 𝑢

]𝑇
using linear matrix inequalities. [20%]
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3 (a) Outline how an algorithm that can minimise some norm of a vector 𝑧, subject
to constraints on 𝑧, can be used as the basis of a model predictive control scheme. Details
are not required, and in particular you are not required to construct any matrices. [10%]

(b) (i) Show, using sketches or otherwise, that for 𝛼 > 0

min
𝑢

|𝑧 − 𝑢 | + 𝛼 |𝑢 | =

|𝑧 |, if 𝛼 ≥ 1

𝛼 |𝑧 |, if 𝛼 ≤ 1

(Hint: Assume first that 𝑧 > 0, in which case the minimum occurs for 𝑢 somewhere
in the range [0, 𝑧], and then generalise.) [10%]

(ii) Show, using sketches or otherwise, that

min
𝑢

max{|𝑧 − 𝑢 |, 𝛼 |𝑢 |} = 𝛼

1 + 𝛼
|𝑧 |

(Hint: The hint in part (b)(i) also applies here.) [10%]

(c) Consider the problem of minimising each of the following three cost functions,
subject to

𝑥0 = 𝑥, 𝑥𝑘+1 = 2𝑥𝑘 + 𝑢𝑘 : 𝑘 = 0, 1

(i) 𝐽1(𝑥) = |𝑥1 | + |𝑥2 | + 𝛼( |𝑢0 | + |𝑢1 |)

(ii) 𝐽2(𝑥) = 𝑥2
1 + 𝑥2

2 + 𝛼2(𝑢2
0 + 𝑢2

1)

(iii) 𝐽∞(𝑥) = max( |𝑥1 |, |𝑥2 |, 𝛼 |𝑢0 |, 𝛼 |𝑢1 |)

Assume 𝛼 > 0. In each case find min𝑢0,𝑢1 𝐽• and the minimising 𝑢0, and describe how
they vary with 𝛼. [30%]
(Hint: you may find it easiest in each case to minimise over 𝑢1 for fixed 𝑢0 and then
minimise the resulting answer over 𝑢0.)

(d) Explain how your answers to part (c) can be used to construct a receding horizon
controller for the system

𝑥(𝑘 + 1) = 2𝑥(𝑘) + 𝑢(𝑘)

For what range of 𝛼 is the closed loop system stable in each case? [30%]

(e) Comment briefly on the results. [10%]
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4 Figure 3 shows a gridworld in which an agent starts in square 4 and proceeds by
moving horizontally or vertically (but not diagonally) to an adjacent square. Each visit to
a square incurs a cost of 1, with the exception of the lava filled square 7 for which the cost
is 100. If the agent moves to square 7 then it is immediately transported back to the start
square 4 after incurring the cost of 100. The episode ends when the agent reaches square
6. The solution which minimises the overall cost is 4 → 5 → 6 with a cost of 2.

1 2 3

4 5 6

7

Fig. 3

(a) Explain briefly how the SARSA algorithm, with 𝜖-greedy action selection, may be
applied to the problem of completing this task with a small total cost. [10%]

(b) Consider the following collection of five episodes

1) 4 → 5 → 6, 2) 4 → 1 → 2 → 5 → 6, 3) 4 → 5(→ 7) → 4 → 5 → 6

4) 4 → 5(→ 7) → 4 → 5 → 6, 5) 4 → 5(→ 7) → 4 → 5 → 6

(where the brackets around the → 7 are to show that this is not the resulting next state,
since the next state after applying the action → 7 is actually 4.)

(i) If the value of 𝑄(𝑠, 𝑎) is initially set to ∞ for all state-action pairs then what
are the revised values of 𝑄(𝑠, 𝑎) after each episode? (You may find it helpful to
show these using numbers and arrows on one of more copies you have made of
Fig. 3. Note that after the first move from 5 to 6 then the Q value for that action is
set to 1 since the episode terminates.) [30%]

(ii) Explain how it is possible that these might be the first five episodes that occur.
[10%]

(iii) The algorithm will find eventually different solutions for large and small 𝜖 .
What are they and what approximately is the critical value of 𝜖 that separates them?

[30%]

(c) If Q-learning, again with with 𝜖-greedy action selection, is applied to this problem
then what is the solution found and what is the average episodic cost? [20%]
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3: Optimal and Predictive Control

Data Sheet (available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =

∫ T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-

Jacobi-Bellman PDE,

−
∂V (x, t)

∂t
= min

u∈U

(

c(x, u) +
∂V (x, t)

∂x
f(x, u)

)

, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = xTQx + uTRu, and JT (x) = xTXTx, if X(t)
satisfies the Riccati ODE,

−Ẋ = Q+XA+ ATX −XBR−1BTX, X(T ) = XT ,

then Jopt = xT
0X(0)x0 and uopt(t) = −R−1BTX(t)x(t).

2. For the discrete-time system satisfyingxk+1 = Axk+Buk withx0 given and cost function,

J(x0, u0, u1, . . . , uh−1) =
h−1
∑

k=0

(

xT
kQxk + uT

kRuk

)

+ xT
hXhxh,

if Xk satisfies the backward difference equation,

Xk−1 = Q+ ATXkA− ATXkB(R +BTXkB)−1BTXkA,

then Jopt = xT
0X0x0 and optimal control signal, uk = −(R+BTXk+1B)−1BTXk+1Axk.

1



2

3. For the system satisfying,
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(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimal H2 controller is given by,

[

ẋk

u

]

=

[

A−B2F −HC2 −H

F 0

][

xk

y

]

where F = BT
2 X , H = Y CT

2 , and X and Y are stabilising solutions to

0 = XA+ ATX + CT
1 C1 −XB2B

T
2 X (CARE)

and

0 = Y AT + AY + B1B
T
1 − Y CT

2 C2Y (FARE)

(b) The controller given by,

[

ẋk

u

]

=

[

Â−B2F −HC2 −H

F 0

][

xk

y

]

where F = BT
2 X , H = Y CT

2 , Â = A + 1

γ2B1B
T
1 X , and X and Y are stabilising

solutions to,

XA+ ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

and

Y ÂT + ÂY + B1B
T
1 − Y

(

CT
2 C2 − γ−2F TF

)

Y = 0,

satisfies‖Tw→z‖∞ ≤ γ.

K Glover, 2013

F. Forni (no change), 2019
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