Question 2-

(a)

$$
\begin{aligned}
& \quad \mathcal{F}_{l}(P(s), K(s))=T_{\bar{w} \rightarrow \bar{z}} \\
& \bar{z}=P_{11} \bar{w}+P_{12} \bar{u} \\
& \bar{y}=P_{21} \bar{w}+P_{22} \bar{u} \\
& \bar{u}=K \bar{y} \\
& \bar{u}=K\left(P_{21} \bar{w}+P_{22} \bar{u}\right) \\
& \Rightarrow \bar{u}=\left(I-K P_{22}\right)^{-1} K P_{21} \bar{w} \\
& \Rightarrow \bar{z}=P_{11} \bar{w}+P_{12} \bar{u}=\left[P_{11}+P_{12}\left(I-K P_{22}\right)^{-1} K P_{21}\right] \bar{w}
\end{aligned}
$$

So

$$
\mathcal{F}_{l}(P(s), K(s))=T_{\bar{w} \rightarrow \bar{z}}=P_{11}+P_{12}\left(I-K P_{22}\right)^{-1} K P_{21}
$$

(b) Comparing with the formulation in the data sheet of the \mathcal{H}_{2} optimal control problem we have

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], & B_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad B_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
C_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right], & C_{2}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\end{array}
$$

The matrices A_{K}, B_{K}, C_{K} in the state space realization of the controller are (from the data sheet),

$$
\begin{aligned}
& A_{K}=A-B_{2}^{T} F-H C_{2} \\
& B_{K}=-H \\
& C_{K}=F
\end{aligned}
$$

where $F=B_{2}^{T} X, H=Y C_{2}^{T}$. Substituting the expressions given for X, Y we have

$$
\begin{aligned}
& A_{K}=\left[\begin{array}{cc}
1-\alpha & 1 \\
-2 \alpha & 1-\alpha
\end{array}\right], \\
& B_{K}=-H=-\left[\begin{array}{l}
1 \\
1
\end{array}\right] \alpha, \\
& C_{K}=F=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \alpha
\end{aligned}
$$

(c) LQR problem. Comparing with the form in the data sheet, we have

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], Q=C_{1}^{T} C_{1}, R=1, B=B_{2}, C=C_{1} \\
u_{o p t}=-R^{-1} B^{T} X x
\end{gathered}
$$

where X is the stabilising solution of the CARE in (b), and is hence as given in (b). Optimal cost

$$
J_{o p t}=x_{0} X x_{0}=2 \alpha
$$

(d) In (b) we have an output feedback \mathcal{H}_{2} optimal control problem, and the optimal controller involves an observer to estimate the state, together with a state feedback policy acting on the estimated state. The problem in (c), on the other hand, is a state feedback optimal control problem that can also be formulated as an \mathcal{H}_{2} optimal control problem.

4F3 cribs

Question 1 Q2

(a) The value function is

$$
V(x, k)=\min _{u_{k}, \ldots, u_{h-1}}\left\{x_{h}^{2}+\sum_{i=k}^{h-1}\left(x_{i}^{2}+u_{i}^{2}\right)\right\}
$$

where x_{k+1}, \ldots, x_{h} is the sequence generated with inputs u_{k}, \ldots, u_{h-1} given that $x_{k}=x$, i.e. it is the minimum remaining cost from step k onwards given that $x_{k}=x$. The dynamic programming equation is

$$
\begin{aligned}
V(x, k) & =\min _{u}\left\{x^{2}+u^{2}+V\left(x_{k+1}, k+1\right)\right\} \\
& =\min _{u}\left\{x^{2}+u^{2}+V(x+u, k+1)\right\}
\end{aligned}
$$

(b) Substituting $V(x, k)=g(k) x^{2}$ into the dynamic programming equation we get

$$
\begin{equation*}
g(k) x_{k}^{2}=\min _{u}\left\{x^{2}+u^{2}+g(k+1)(x+u)^{2}\right\} \tag{1}
\end{equation*}
$$

Differentiate w.r.t. u and set equal to 0 to find the minimizing value of u, i.e.

$$
\begin{aligned}
& 2 u+2 g(k+1)(x+u)=0 \\
\Rightarrow & u=-\frac{x g(k+1)}{1+g(k+1)}
\end{aligned}
$$

So

$$
\begin{aligned}
\min _{u}\{.\} & =x^{2}+\left[\frac{x g(k+1)}{1+g(k+1)}\right]^{2}+g(k+1)\left[x-\frac{x g(k+1)}{1+g(k+1)}\right]^{2} \\
& =x^{2}+x^{2} \frac{x g^{2}(k+1)}{(1+g(k+1))^{2}}+\frac{x^{2} g(k+1)}{(1+g(k+1))^{2}} \\
& =x^{2}\left(1+\frac{g(k+1)}{1+g(k+1)}\right)
\end{aligned}
$$

Hence from (1) we have

$$
g(k)=1+\frac{g(k+1)}{1+g(k+1)}
$$

(c) $h=3, x_{0}=2$

$$
\begin{aligned}
& g(h)=1 \text { since } V\left(x_{h}, h\right)=x_{h}^{2} \\
& g(2)=1+\frac{g(3)}{1+g(3)}=1+1 / 2=3 / 2 \\
& g(1)=1+\frac{g(2)}{1+g(2)}=1+\frac{3 / 2}{1+3 / 2}=1+3 / 5=8 / 5 \\
& g(0)=1+\frac{g(1)}{1+g(1)}=1+\frac{8 / 5}{1+8 / 5}=1+8 / 13=21 / 13
\end{aligned}
$$

Minimum cost is $V\left(x_{0}, 0\right)=2^{2} \times 21 / 13=84 / 13$
(d)

$$
\tilde{J}=\tilde{x}_{h}^{2}+\sum_{k=0}^{h-1}\left(\tilde{x}_{k}^{2}+\tilde{u}_{k}^{2}\right)
$$

Also the system under the transformation becomes

$$
\tilde{x}_{k+1}=\alpha \tilde{x}_{k}+\alpha \tilde{u}_{k}
$$

From the data sheet, or from the previous expressions with $g(k+1)$ replaced with $\alpha^{2} g(k+1)$, we have

$$
\tilde{u}_{k}=-\left(1+\alpha^{2} X_{k+1}\right)^{-1} \alpha^{2} X_{k+1} \tilde{x}_{k}
$$

where

$$
\begin{aligned}
X_{k-1} & =1+\alpha^{2} X_{k}-\alpha^{2} X_{k}\left(1+\alpha^{2} X_{k}\right)^{-1} \alpha^{2} X_{k} \\
& =1+\alpha^{2} X_{k}\left(1-\frac{\alpha^{2} X_{k}}{1+\alpha^{2} X_{k}}\right) \\
& =1+\frac{\alpha^{2} X_{k}}{1+\alpha^{2} X_{k}}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\tilde{u}_{k} & =-\frac{\alpha^{2} X_{k+1}}{1+\alpha^{2} X_{k+1}} \tilde{x}_{k} \\
\Leftrightarrow u_{k} & =-\frac{\alpha^{2} X_{k+1}}{1+\alpha^{2} X_{k+1}} x_{k}
\end{aligned}
$$

3) a) Open loop ope: sumwl problen solsed over finiel hovigon and stanting foon weasuresend or posex repecured jo nexc mearured state.
b)

$$
\begin{aligned}
J(x) & =q x_{0}^{2}+u_{0}^{2}+q x_{1}^{2}+u_{1}^{2} \\
& =q x_{0}^{2}+u_{0}^{2}+q\left(2 x_{0}+u_{0}\right)^{2}+u_{1}^{2} \\
& =5 q x_{0}^{2}+(1+q) u_{0}^{2}+4 q x_{0} u_{0}+u_{1}^{2}
\end{aligned}
$$

minimmen cleands Lus $u_{1}=0$

$$
\begin{aligned}
\frac{\partial J}{\partial u} & =2(1+q) u_{0}+4 q x_{0} \\
& =0 \text { al } u_{0}=-\frac{2 q}{1+q} x_{0}
\end{aligned}
$$

Closed loop is ter $x_{u+1}=\left(2-\frac{2 q}{1+q}\right) x_{k}=\frac{2}{1+q} x_{k}$

$$
\Rightarrow \text { pole at } z=\frac{2}{1+q}<|z|<1 \text { if } q>1
$$

c) Lee K be as defined, ter can wree

$$
\sum_{l=0}^{a} q x(l)^{2}+u(l)^{\prime}=\sum_{e=0}^{n} q x(1)^{2}+u(l)^{2}+K x(n+1)^{2}
$$

wher be finul term represenes de optional cost fion $l=n+1$ onwards.

Now need to find a terminal set which is invariant and constraine admissible wro the conerol low $u=-L_{x}$
$L>1$, as courol law is scoabilising and so a suitabe conscrair admissible sect is $1,4 \leq \frac{1}{L}$. Is dis
in uariaker?

Yes, if $\left|x_{k}\right| \leq \frac{1}{L}$ then $x_{k+1}=2 x_{k}-L x_{k}$

$$
\left\lvert\, x_{1}+1 \leq(2-L) \cdot \frac{1}{L}=\frac{2}{L}-1=\frac{2-L}{L} \leq \frac{1}{L}\right.
$$

Hence, receli-y hoija comiol law is to mi-inie

$$
\sum_{k=0}^{n}\left(q x_{k}^{2}+u_{k}^{2}\right)+K x_{n+1}^{2} \text {. S.t. }\left|x_{n+1}\right|<\frac{1}{L}
$$

sufject to $x_{0}=x(x)$ and apply de conesi has $u(u)=u_{0}^{*}$.
4) a) $Q(x, a)$ is de opinal cose afeer valizy action a at scave $Q(x, a)=r(x, a)+\min _{a^{\prime}} Q\left(S(x, a), a^{\prime}\right)$
b) Ir is requerred dae de $\cos r$ to be oprivijed is a Sum of stage cosirs $r(1, a)$. Fo i) it is, wiel stage cost $u_{k}^{2}+x_{k}^{2}$ for ii) it is nor
c) $r(x, a)=|x|+|a|$

$$
\Rightarrow Q_{1}=
$$

$$
\left.Q_{2}(x, a)=|x|+|a|+\min _{a^{\prime}} Q\left(x+a, a^{\prime}\right)=\begin{array}{l|l|l|l|}
4 & 8 & 8 & 8 \\
3 & 6 & 6 & 6 \\
2 & 4 & 8 \\
2 & 4 & 4 & 4 \\
\hline
\end{array} \right\rvert\,
$$

$\Rightarrow Q_{4}$ is optimad
Oprinal siratyy for $x_{0}=r$ is $n_{0}=-2, \Rightarrow \cos t=4$ For $x^{2}+n$ cost of (t) stratey is 16
cost- of $u_{0}=-1, u_{1}=-1$ is $4+1+1+1$ $=$ I whick is hence a bater sombegy

