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Module 4F3

AN OPTIMISATION BASED APPROACH TO CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.
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1 Consider a system with transfer function representation[
𝑧(𝑠)
𝑦̄(𝑠)

]
=

[
𝑃11(𝑠) 𝑃12(𝑠)
𝑃21(𝑠) 𝑃22(𝑠)

] [
𝑤̄(𝑠)
𝑢̄(𝑠)

]
(1)

and control policy 𝑢̄(𝑠) = 𝐾 (𝑠) 𝑦̄(𝑠).

(a) Explain what is meant by the lower Linear Fractional Transformation (LFT)
F𝑙 (𝑃(𝑠), 𝐾 (𝑠)) for the system above, and derive an expression for it. [20%]

(b) The system in (1) has the following state space realization[
¤𝑥1
¤𝑥2

]
=

[
1 1
0 1

] [
𝑥1
𝑥2

]
+
[

1
1

]
𝑤1 +

[
0
1

]
𝑢

𝑧 =

[
𝑥1 + 𝑥2
𝑢

]
𝑦 =

[
1 0

]
𝑥 + 𝑤2

where 𝑥 is the state vector and 𝑤1, 𝑤2 are external disturbances.
Describe how you would solve the H2 optimal control problem

min
𝐾 (𝑠) stabilising

‖F𝑙 (𝑃(𝑠), 𝐾 (𝑠))‖2

Furthermore, if the stabilizing solutions to the CARE and FARE equations associated with
this problem are, respectively,

𝑋 =

[
2 1
1 1

]
𝛼, 𝑌 =

[
1 1
1 2

]
𝛼

where 𝛼 = 2+
√

5, derive a state space realization for the optimal control policy, expressing
your answer in terms of 𝛼. [35%]

(c) Consider now the system[
¤𝑥1
¤𝑥2

]
=

[
1 1
0 1

] [
𝑥1
𝑥2

]
+
[

0
1

]
𝑢

𝑧 =

[
𝑥1 + 𝑥2
𝑢

]
𝑦 =

[
𝑥1
𝑥2

]
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with state feedback policy 𝑢 = 𝐾𝑥, where 𝐾 is a constant matrix.
Consider the optimal control problem

min
𝐾 stabilising

2𝜋
∫ ∞

0
𝑧𝑇 𝑧𝑑𝑡

Find the matrix 𝐾 that solves this problem, and find also the minimum cost when the initial
condition is 𝑥1(0) = 𝑥2(0) = 1. [30%]

(d) Discuss the connection and differences between the optimal control problems
considered in parts (b) and (c). [15%]
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2 Consider the system

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 (2)

where 𝑥𝑘 ∈ R, 𝑢𝑘 ∈ R for 𝑘 = 0, . . . , ℎ − 1, and 𝑥ℎ ∈ R . Consider also the cost function

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) = 𝑥2
ℎ
+
ℎ−1∑︁
𝑘=0

(𝑥2
𝑘
+ 𝑢2

𝑘
)

and the optimal control problem

min
𝑢0,...,𝑢ℎ−1

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1)

for a given initial condition 𝑥0.

(a) Describe what is meant by the value function for the optimal control problem
described above. Write also the dynamic programming equation for this problem. [15%]

(b) Show that the value function at step 𝑘 is of the form 𝑔(𝑘)𝑥2
𝑘

and use this to derive
an iteration for 𝑔(𝑘). [35%]

(c) Find the optimal value of 𝐽 when 𝑥0 = 1, ℎ = 3. [15%]

(d) Consider the following modified cost function for the system in (2):

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) = 𝛼2ℎ𝑥2
ℎ
+
ℎ−1∑︁
𝑘=0

(𝛼2𝑘𝑥2
𝑘
+ 𝛼2𝑘𝑢2

𝑘
)

where 𝛼 ∈ R is a constant. Using the transformation 𝑥𝑘 = 𝛼𝑘𝑥𝑘 , 𝑢̃𝑘 = 𝛼𝑘𝑢𝑘 , derive an
iteration that gives the optimal control policy when the optimal control problem described
at the beginning of the question is solved, but with the cost function 𝐽 replaced with the
cost function 𝐽. [35%]
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3 (a) Describe briefly the receding horizon principle and explain why model
predictive control with a receding horizon may not result in a stable feedback system.

[10%]

(b) Consider the system
𝑥(𝑙 + 1) = 2𝑥(𝑙) + 𝑢(𝑙)

with a model predictive controller using the receding horizon cost function

𝐽 (𝑥) =
1∑︁
𝑘=0

𝑞𝑥2
𝑘
+ 𝑢2

𝑘
(subject to 𝑥0 = 𝑥, 𝑥1 = 2𝑥0 + 𝑢0 )

Find explicitly the resulting feedback law, and hence show that the resulting feedback
system is stable if, and only if, 𝑞 > 1. [40%]

(c) Assume 𝑞 < 1. For the system in part (b), the controller that minimizes the infinite
horizon cost ∞∑︁

𝑙=0
𝑞𝑥(𝑙)2 + 𝑢(𝑙)2 (3)

is given by 𝑢(𝑙) = −𝐾/(1 + 𝐾)𝑥(𝑙), where 𝐾 > 0 solves 𝐾 = 𝐾/(1 + 𝐾) + 𝑞, with an
optimal cost of 𝐾𝑥(0)2.
Consider now the modified system

𝑥(𝑙 + 1) = 2𝑥(𝑙) + sat 𝑢(𝑙)

where

sat 𝑢 =


1, 𝑢 > 1

𝑢, −1 ≤ 𝑢 ≤ 1

−1, 𝑢 < −1

(i) Explain why it is not possible to stabilize the system for all possible values of
𝑥(0). [10%]

(ii) How should the receding horizon cost function of part (b) be modified in order
to ensure that the new feedback system is stable, and that (3) is minimized, for as
wide a range of 𝑥(0) as possible? Justify, and explain carefully, your answer. [40%]
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4 (a) Define the action-value function 𝑄 and write down its update equation for the
𝑄-learning algorithm. [15%]

(b) Consider the system
𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘

with the initial condition 𝑥0 = 𝑁 , for 𝑁 integer, and the objective of minimizing one of
the following control objectives

(i)
∑
𝑘 𝑢

2
𝑘
+∑

𝑘 𝑥
2
𝑘

(ii) max{max𝑘 {𝑢𝑘𝛾𝑘 },max𝑘 {𝑥𝑘𝛾𝑘 }}, for 𝛾 > 1.

The action 𝑢 is also required to be integer. These are both reasonable objectives, but only
one of these problems can be solved using 𝑄-learning. Which one, and why?. Explain
your reasoning carefully. [25%]

(c) For the same system as in part (b) consider now the problem of minimising∑︁
𝑘

|𝑢𝑘 | +
∑︁
𝑘

|𝑥𝑘 |

for
0 ≤ 𝑥 ≤ 4 and |𝑢 | ≤ 2

Choices of 𝑢 that would result in 𝑥 going outside that range are not admissible, e.g. when
𝑥 = 1 then 𝑢 must be chosen from {−1, 0, 1, 2} etc.

(i) Find an optimal solution by using four iterations of 𝑄-learning, exploring the
whole state-action space at each iteration and starting with 𝑄0(𝑥, 𝑢) = 0 for all 𝑥
and 𝑢, so the first iteration, 𝑄1, is the result of updating the 𝑄-value of each state
and action pair once etc. [40%]
[You might find it convenient to tabulate the 𝑄 values on a sequence of 5x5 grids.]

(ii) Explain, using one state action pair as an example, how you would verify that
the 𝑄-values have converged to their optimal value. [10%]

(iii) What is the optimal trajectory starting from 𝑥(0) = 2? [10%]

END OF PAPER
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3:  An optimisation based approach to control 

(available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =
∫ T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-
Jacobi-Bellman PDE,

−∂V (x, t)

∂t
= min

u∈U

(
c(x, u) +

∂V (x, t)

∂x
f(x, u)

)
, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = xTQx + uTRu, and JT (x) = xTXTx, if X(t)
satisfies the Riccati ODE,

−Ẋ = Q+XA+ ATX −XBR−1BTX, X(T ) = XT ,

then Jopt = xT0X(0)x0 and uopt(t) = −R−1BTX(t)x(t).

2. For the discrete-time system satisfying xk+1 = Axk+Buk with x0 given and cost function,

J(x0, u0, u1, . . . , uh−1) =
h−1∑
k=0

(
xTkQxk + uTkRuk

)
+ xThXhxh,

if Xk satisfies the backward difference equation,

Xk−1 = Q+ ATXkA− ATXkB(R +BTXkB)−1BTXkA,

then Jopt = xT0X0x0 and optimal control signal, uk = −(R+BTXk+1B)−1BTXk+1Axk.
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2

3. For the system satisfying,


ẋ

z

y

 =


A

[
B1 0

]
B2[

C1

0

] [
0 0
0 0

] [
0
I

]
C2

[
0 I

]
0




x

w

u

 where



(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimalH2 controller is given by,[
ẋk

u

]
=

[
A−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , and X and Y are stabilising solutions to

0 = XA+ ATX + CT
1 C1 −XB2B

T
2 X (CARE)

and

0 = Y AT + AY +B1B
T
1 − Y CT

2 C2Y (FARE)

(b) The controller given by,

[
ẋk

u

]
=

[
Â−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , Â = A + 1
γ2
B1B

T
1 X , and X and Y are stabilising

solutions to,

XA+ ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

and

Y ÂT + ÂY +B1B
T
1 − Y

(
CT

2 C2 − γ−2F TF
)
Y = 0,

satisfies‖Tw→z‖∞ ≤ γ.


