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Module 4F3

AN OPTIMISATION BASED APPROACH TO CONTROL
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in the right margin.
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1 Consider the discrete-time system

𝑥𝑘+1 = 𝑓 (𝑥𝑘 ) + 𝑔(𝑢𝑘 )

where 𝑥𝑘 ∈ R, 𝑢𝑘 ∈ R for 𝑘 = 0, . . . , ℎ − 1, and 𝑥ℎ ∈ R . Consider also the cost function

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) = 𝐽ℎ (𝑥ℎ) +
ℎ−1∑︁
𝑘=0

𝑐(𝑥𝑘 , 𝑢𝑘 )

and the optimal control problem

min
𝑢0,...,𝑢ℎ−1

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1)

for a given initial condition 𝑥0.

(a) Write down the dynamic programming equation for this problem and discuss its
significance. [25%]

(b) Consider the continuous-time system

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑢)

where 𝑥(𝑡) ∈ R, 𝑢(𝑡) ∈ R, with initial condition 𝑥(0) = 𝑥0. Consider the cost function

𝐽 (𝑥0, 𝑢(.)) =
∫ 𝑇

0
𝑐(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝐽𝑇 (𝑥(𝑇))

By considering the discretization of the continuous time system

𝑥(𝑡 + 𝛿𝑡) = 𝑥(𝑡) + 𝑓 (𝑥(𝑡))𝛿𝑡 + 𝑔(𝑢(𝑡))𝛿𝑡 + O
(
(𝛿𝑡)2

)
and the corresponding dynamic programming equation, derive the Hamilton-Jacobi-
Bellman PDE satisfied by the optimal control input 𝑢(𝑡). [35%]

(c) Consider the optimal control problem in part (b) with 𝑇 → ∞, 𝑓 (𝑥) = −𝑥, 𝑔(𝑢) = 𝑢
and

𝑐(𝑥(𝑡), 𝑢(𝑡)) = 𝑒2𝛼𝑡 (𝑥2(𝑡) + 𝑢2(𝑡)) where 𝛼 < 0.

(i) Use the transformation 𝑥(𝑡) = 𝑒𝛼𝑡𝑥(𝑡), 𝑢̃(𝑡) = 𝑒𝛼𝑡𝑢(𝑡) to show that this
optimal control problem can be transformed to an infinite horizon Linear Quadratic
Regulator problem. [20%]

(ii) Find the optimal control input 𝑢(𝑡). [20%]
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2 Consider the system with state space realization[
¤𝑥1
¤𝑥2

]
=

[
1 1
0 1

] [
𝑥1
𝑥2

]
+
[

2
2

]
𝑤1 +

[
0
1

]
𝑢

𝑧 =

[
2𝑥1 + 2𝑥2

𝑢

]
𝑦 =

[
1 0

] [ 𝑥1
𝑥2

]
+ 𝑤2

where 𝑥1(𝑡) ∈ R, 𝑥2(𝑡) ∈ R are the states of the system, 𝑤1(𝑡), 𝑤2(𝑡) are external
disturbances, and 𝑢(𝑡) is the control input.

Consider also a control policy 𝑢̄(𝑠) = 𝐾 (𝑠) 𝑦̄(𝑠), and the H2 optimal control problem

min
𝐾 (𝑠) stabilising

∥𝑇𝑤→𝑧∥2 (1)

where 𝑇𝑤→𝑧 denotes the transfer function from 𝑤 to 𝑧.

(a) The CARE equation associated with this optimal control problem has two solutions
of the form

𝑋 =

[
𝛼 𝛽

𝛽 𝛽

]
.

Find these two solutions and show that 𝛼 = 2𝛽 in these solutions. [30%]

(b) The FARE equation associated with this optimal control problem has two solutions
of the form

𝑌 =

[
𝛾 𝛾

𝛾 𝛿

]
.

Find these two solutions and show that 𝛿 = 2𝛾 = 2𝛽 in these solutions. [20%]

(c) Find the state space realization of the optimal controller and its transfer function
𝐾 (𝑠), expressing your answers in terms of 𝛽. [30%]

(d) If in equation (1) the objective is to minimize the H∞ norm of 𝑇𝑤→𝑧, instead of its
H2 norm, describe how you would find the optimal controller. [20%]
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3 (a) What is meant by

(i) a convex function;

(ii) a convex set?

Sketch examples of a function and a set which are not convex, illustrating why this is the
case. [20%]
When minimising the value of a function 𝑓 (𝑥) over a set 𝑥 ∈ 𝑋 why is it helpful for both
the function and the set to be convex? [10%]

(b) A plant with state 𝑥𝑘 and input 𝑢𝑘 at time 𝑘 is described by the discrete-time state-
space model 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 . A predictive controller is required to minimise the cost
function

𝑉 (𝑥0, 𝑢0, 𝑢1, ..., 𝑢𝑁−1) = 𝑥𝑇𝑁𝑃𝑥𝑁 +
𝑁−1∑︁
𝑘=0

(𝑥𝑇
𝑘
𝑄𝑥𝑘 + 𝑢𝑇𝑘 𝑅𝑢𝑘 )

subject to the constraints 𝑀𝑥𝑘 + 𝐸𝑢𝑘 ≤ 𝑏 for 𝑘 = 0, 1, ..., 𝑁 − 1 and the given dynamics.

(i) Under what conditions can this be written as a convex optimisation problem
in the decision variables 𝑢0, 𝑢1, . . . , 𝑢𝑁−1 and 𝑥1, 𝑥2, . . . , 𝑥𝑁? Verify that, under
these conditions, the function to be minimised and the constraints to be satisfied are
convex. [30%]

(ii) Show that this problem can be written as a standard quadratic programming
problem of the form

minimise 𝜃𝑇𝐻𝜃 subject to 𝐹𝜃 − 𝑓 = 0 and 𝐺𝜃 − 𝑔 ≤ 0

for suitable matrices 𝐹, 𝐺, 𝐻 and suitable vectors 𝑓 , 𝑔, with the vector 𝜃 containing
the decision variables 𝑢0, 𝑢1, . . . , 𝑢𝑁−1 and 𝑥1, 𝑥2, . . . , 𝑥𝑁 . [15%]

(c) If the aim is to approximate the solution to minimising
∑∞
𝑘=0(𝑥

𝑇
𝑘
𝑄𝑥𝑘 + 𝑢𝑇

𝑘
𝑅𝑢𝑘 )

subject to the same constraints then how should 𝑃 be chosen, what further constraint
should be added to the formulation and how should 𝑁 be chosen? [25%]
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4 Figure 1 shows a Markov decision process with the rewards for each state/action pair
labelled (e.g. the reward for taking action 2 in state 2 is −1).

𝑠1 𝑠2

𝑎2: 𝑟 = 3

𝑎2: 𝑟 = −1

𝑎1: 𝑟 = 2 𝑎1: 𝑟 = 1

Fig. 1

(a) Describe the Monte Carlo Exploring Starts (MCES) and Q-learning algorithms as
they apply to finding the optimal discounted reward for this process. What would be an
appropriate learning rate? [20%]

(b) Assuming a discount factor 𝜆 = 0.8 write down the value function and the associated
optimal control by inspection. Verify that this value function satisfies the Bellman equation
at each state. [20%]

(c) Write down the sequence of states, actions and rewards that follow from starting in
state 1 and applying action 1, and subsequently following the policy of taking action 2 in
state 1 and action 1 in state 2. [15%]

(d) Find the resulting action-values that would result from applying the following
algorithms to the data in Part (c), using a learning rate of 1 and assigning an initial
value of 0 to all action-values:

(i) Q-learning, using all the available data sequentially; [10%]

(ii) First-visit MCES. [10%]

(e) For each set of tentative action-values derived in Part (d) write down the sequence
of states, actions and rewards that would follow from starting in state 1 and following the
greedy policy. [15%]

(f) Which algorithm converges quickest for this problem, and when might the other be
preferred? [10%]

END OF PAPER
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3:  An optimisation based approach to control 

(available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =
∫ T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-
Jacobi-Bellman PDE,

−∂V (x, t)

∂t
= min

u∈U

(
c(x, u) +

∂V (x, t)

∂x
f(x, u)

)
, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = xTQx + uTRu, and JT (x) = xTXTx, if X(t)
satisfies the Riccati ODE,

−Ẋ = Q+XA+ ATX −XBR−1BTX, X(T ) = XT ,

then Jopt = xT0X(0)x0 and uopt(t) = −R−1BTX(t)x(t).

2. For the discrete-time system satisfying xk+1 = Axk+Buk with x0 given and cost function,

J(x0, u0, u1, . . . , uh−1) =
h−1∑
k=0

(
xTkQxk + uTkRuk

)
+ xThXhxh,

if Xk satisfies the backward difference equation,

Xk−1 = Q+ ATXkA− ATXkB(R +BTXkB)−1BTXkA,

then Jopt = xT0X0x0 and optimal control signal, uk = −(R+BTXk+1B)−1BTXk+1Axk.

1



2

3. For the system satisfying,


ẋ

z

y

 =


A

[
B1 0

]
B2[

C1

0

] [
0 0
0 0

] [
0
I

]
C2

[
0 I

]
0




x

w

u

 where



(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimalH2 controller is given by,[
ẋk

u

]
=

[
A−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , and X and Y are stabilising solutions to

0 = XA+ ATX + CT
1 C1 −XB2B

T
2 X (CARE)

and

0 = Y AT + AY +B1B
T
1 − Y CT

2 C2Y (FARE)

(b) The controller given by,

[
ẋk

u

]
=

[
Â−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , Â = A + 1
γ2
B1B

T
1 X , and X and Y are stabilising

solutions to,

XA+ ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

and

Y ÂT + ÂY +B1B
T
1 − Y

(
CT

2 C2 − γ−2F TF
)
Y = 0,

satisfies‖Tw→z‖∞ ≤ γ.


