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Question 1

(a)

V (x, k) = min
u

{c(x, u) + V (xk+1, k + 1)}

= min
u

{c(x, u) + V (f(x, u), k + 1)}

V (x, h) = Jh(xh)

The value function V (x, k) is the minimum remaining cost from step k onwards,
given that xk = x.
Advantages: Can be used to derive analytical expressions for the optimal policy
(e.g. LQR problem). Can reduce the computational complexity when xk, uk take
discrete, finite values.
Disadvantages: computational cost increases exponentially with increasing number
of states. [10%]

(b) V (x, 0) is the minimum cost for optimal control problem formulated with initial
condition x.
V (x, h) = Jh(x) is the terminal cost with xh = x. [15%]

(c) (i) Using the candidate value function V (x, k) = x2Xk where Xk > 0 the Dynamic
Programming equation gives

x2Xk = min
u

{
x2 + u2 + (αx+ u)2Xk+1

}
= x2 + x2α2Xk+1 +min

u

{(√
1 +Xk+1u+

αxXk+1√
1 +Xk+1

)2

− (αxXk+1)
2

1 +Xk+1

}

= x2

(
1− (αXk+1)

2

1 +Xk+1

+ α2Xk+1

)
So the iteration is

Xk =

(
1− (αXk+1)

2

1 +Xk+1

+ α2Xk+1

)
with the terminal condition Xh = λ . Note that Xk > 0 for all k also holds
with this iteration so V (x, k) = x2Xk is a valid candidate value function. [25%]
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(ii) We need to solve w.r.t. X the equation

X =

(
1− (αX)2

1 +X
+ α2X

)
which is equivalent to

X2 − α2X − 1 = 0

This has solutions

X =
α2 ±

√
α4 + 4

2

and we choose the positive solution

X =
α2 +

√
α4 + 4

2

The optimal cost is V (x0, 0) = (x0)
2X. [10%]

(iii) X1 = 1/2, and from the iteration we have X0 = 13/12.
The optimal cost is J = (x0)

2X0 = (1/2)2 × (13/12) = 13/48 [10%]

(d) Note that x∗ = r, u∗ = r(1 − α) is an equilibrium point of the system. Using the
transformation ũ = u− u∗, x̃ = x− x∗ the system becomes

x̃k+1 = αx̃k + ũk

and the cost is
∞∑
k=0

(x̃2
k + ũ2

k)

i.e. the formulation is as in part (c)(ii) and hence the value of X is the same as in
that part. The optimal control input is

ũk = −α
X

1 +X
x̃k

which is equivalent to

uk = u∗ − α
X

1 +X
(xk − x∗)

The cost function considered is relevant when x∗ is a desired operating point for the
system. [30%]
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Question 2

(a) The H2 norm of G, denoted as ∥G∥2, is defined as

∥G∥22 =
∫ ∞

−∞
trace

{
G(jω)

T
G(jω)

}
dω

The H∞ norm of G, ∥G∥∞, can be defined in two equivalent ways:

• ∥G∥∞ = supω σ(G(jw))

• ∥G∥∞ = supû̸=0
∥Gû∥2
∥û∥2 = supu̸=0

∥y∥2
∥u∥2 where ŷ(s) = G(s)û(s)

[10%]

(a) Comparing with the formulation in the data sheet for anH2 optimal control problem
we have

A =

[
0 1
0 0

]
, B1 =

[
0
1

]
, B2 =

[
0
1

]
,

C1 =
[
2 0

]
, C2 =

[
1 0

]
Denoting

X =

[
α β
β γ

]
and substituting in CARE we get[
α β
β γ

] [
0 1
0 0

]
+

[
0 0
1 0

] [
α β
β γ

]
+

[
4 0
0 0

]
−
[
α β
β γ

] [
0 0
0 1

] [
α β
β γ

]
= 0

Hence [
0 α
0 β

]
+

[
0 0
α β

]
+

[
4 0
0 0

]
−
[

β2 βγ
βγ γ2

]
= 0

We therefore have

4− β2 = 0 =⇒ β = 2

α− βγ = 0 =⇒ α = 4

2β − γ2 = 0 =⇒ γ = 2

Then denoting

Y =

[
α̃ β̃

β̃ γ̃

]
and substituting in FARE we get[
α̃ β̃

β̃ γ̃

] [
0 0
1 0

]
+

[
0 1
0 0

] [
α̃ β̃

β̃ γ̃

]
+

[
0 0
0 1

]
−
[
α̃ β̃

β̃ γ̃

] [
1 0
0 0

] [
α̃ β̃

β̃ γ̃

]
= 0
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This gives

1− β̃2 = 0 =⇒ β̃ = 1

γ̃ − β̃α̃ = 0 =⇒ γ̃ =
√
2

2β̃ − α̃2 = 0 =⇒ α̃ =
√
2

The matrices AK , BK , CK in the state space realization of the controller are then as
specified in the data sheet, i.e.

AK = A−B2F −HC2

BK = −H

CK = F

where F = BT
2 X, H = Y CT

2 .

[40%]

(c) (i) This is a full information H∞ control problem. Hence we need to solve the
corresponding Riccati equation in the data sheet with γ =

√
2. Denoting

X =

[
α̂ β̂

β̂ γ̂

]
we have[
α̂ β̂

β̂ γ̂

] [
0 1
0 0

]
+

[
0 0
1 0

] [
α̂ β̂

β̂ γ̂

]
+

[
4 0
0 0

]
−
[
α̂ β̂

β̂ γ̂

] [
0 0
0 1/2

] [
α̂ β̂

β̂ γ̂

]
= 0

Hence [
0 α̂

0 β̂

]
+

[
0 0

α̂ β̂

]
+

[
4 0
0 0

]
− 1

2

[
β̂2 β̂γ̂

β̂γ̂ γ̂2

]
= 0

We therefore have

4− 1

2
β̂2 = 0 =⇒ β̂ =

√
8

α̂− 1

2
β̂γ̂ = 0 =⇒ α̂ = 83/4

2β̂ − 1

2
γ̂2 = 0 =⇒ γ̂ = 2× 81/4

The controller is of the form u = −Fx where F = BT
2 X

[30%]

(ii) Use a bisection algorithm to find the minimum γ for which the Riccati equation
has a solution. [10%]

(iii) No, since the Riccati equaiton does not have a positive definite solution. [10%]
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Question 3

(a) It is better to penalize ∆ui because this allows ui to evolve towards a nonzero
constant, which is not penalized. Notice ui must be nonzero to keep yi near the
setpoint ys. [10%]

(b) For N = 2, we have

Mx =

[
C⊺QC 0

0 C⊺PC

]
, fx =

[
−2y⊺sQC
−2y⊺sPC

]
Mu =

[
2 −1
−1 1

]
, fu =

[
−2u(k − 1)

0

]
constant = y⊺sQys + y⊺sPys + u(k − 1)⊺u(k − 1)

[25%]

(c) The system can be written as

x1 −Bu0 = Ax0 = Ax(k)

x2 − Ax1 −Bu1 = 0

or equivalently [
I 0 −B 0

−A I 0 −B

]
︸ ︷︷ ︸

Ã


x1

x2

u0

u1

 =

[
Ax(k)

0

]
︸ ︷︷ ︸

B̃

while the constraints can be written as

−1 ≤ u0 − u(k − 1) ≤ 1

−1 ≤ u1 − u0 ≤ 1

or equivalently 
0 0 1 0
0 0 −1 0
0 0 −1 1
0 0 1 −1


︸ ︷︷ ︸

G


x1

x2

u0

u1

 ≤


1 + u(k − 1)
1− u(k − 1)

1
1


︸ ︷︷ ︸

h

where in the last equation the inequality is element-wise.

It follows that the control problem is equivalent to

min
θ

θ⊺
[
Mx 0
0 Mu

]
θ +

[
f⊺
x f⊺

u

]
θ

subject to

Ãθ = B̃

Gθ ≤ h

which is in the standard QP form. [25%]
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(d) The QP is strictly convex if Mx and Mu above are positive definite. It can be readily
verified that Mu is positive definite. This can be done by computing its eigenvalues,
or by checking that the principal minors of Mu ([Mu]11 = 2 and detMu = 1) are
both positive. Mx is positive definite it C⊺QC and C⊺PC are both positive definite.
This will be satisfied if Q and P are positive definite and C is full column rank (a
rather restrictive assumption). If the QP is strictly convex, then the optimal MPC
law u(k) = u∗

0(x(k), u(k − 1)) is unique. [15%]

(e) We can eliminate x1 and x2 from the decision variables by writing

θx =

[
x1

x2

]
=

[
Ax(k) Bu0

A(A(x(k) +Bu0) Bu1

]
=

[
B 0
AB B

]
θu +

[
Ax(k)
A2x(k)

]
Hence

θ⊺xMxθx = θ⊺u

[
CB 0
CAB CB

]⊺ [
Q 0
0 P

] [
CB 0
CAB CB

]
θu + non-quadratic terms

The QP is now only in the decision variables θu. For it to be strictly convex, it is
sufficient that Q and P be positive definite. [25%]
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Question 4

(a) A simple cost function that satisfies the requirements is

J(s0) =

∫ ∞

0

(xf − x(t))2 + (ys − y(t))2 +
M

2
v(t)2 +

J

2
ω(t)2︸ ︷︷ ︸

r(s,a)

dt

The problem is episodic because even though it has an infinite time horizon, there is
a stopping set S that can be reached in finite time and for which there is an action
a(t) that guarantees r(s(t), a(t)) = 0 and s(t) ∈ S after the stopping set is reached.
In our case,

S = {(x, u, θ) ∈ R3 |x = xf , y = yf}
and for a = (v, ω) = (0, 0) we have

s(t0) ∈ S, a = (0, 0) =⇒ ṡ(t) = 0, r(s(t), a(t)) = 0

=⇒ s(t) ∈ S, r(s(t), a(t)) = 0

for all t ≥ t0. [20%]

(b) The state and action spaces are continuous, and hence very large. We cannot apply
tabular RL, and must instead rely on more advanced methods (e.g., actor-critic
methods) that use a function approximation for the action-value function. Such
methods can be difficult to fine tune due to their sensitivity to hyperparameter
choices. [10%]

(c) Choosing µ =
√
2 implies that, starting from (x, yθ) = (0, 0, 0), the robot can only

move between integer values of x, y; furthermore, it can only face directions given
by θ = kπ/4 for some k. This means that the state space is discrete (countable)
and the action space is finite. We can apply tabular RL.

The state transitions are easily found by integrating the states while each action is
taken. We have

s(t+1) =


s(t) if a(t) = a0

(x(t), y(t), θ(t) + π/4) if a(t) = a1
(x(t), y(t), θ(t)− π/4) if a(t) = a2

(x(t) + cos θ(t), y(t) + sin θ(t), θ(t)) if a(t) = a3, θ(t) = kπ/2

(x(t) +
√
2 cos θ(t), y(t) +

√
2 sin θ(t), θ(t)) if a(t) = a3, θ(t) = kπ/2 + π/4

(alternatively, the state transitions above can be explained with a diagram of the
possible movements of the robot).

Hence we can reformulate the problem with the cost
∞∑
t=0

(x(t)− xf )
2 + (y(t)− yf )

2 + c(a(t), θ(t))

with

c(a, θ) =


0, a = a0∫ 1

0
J
2

(
π
4

)2
dt = Jπ2/32, a = a1, a2∫ 1

0
M
2
12dt = M

2
, a = a3, θ = kπ/2∫ 1

0
M
2
(
√
2)2dt = M, a = a3, θ = kπ/2 + π/4

Notice the problem is still episodic since the target states are integer valued. [35%]
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(d) Q-learning works by updating an initial guess of the action-value function Q0(s, a)
according to

Qt+1(s(t), a(t)) = (1− α)Qt(s(t), a(t)) + α(r(t) + min
a

Qt(s(t+ 1), a))

if (s(t), a(t)) is visited at time t during an observed trajectory of the robot, and

Qt+1(s(t), a(t)) = Qt(s(t), a(t))

if (s(t), a(t)) is not visited at that time. The action a(t) is obtained by sampling
actions from the ϵ-greedy policy.

The problem considers α = 0.5, s(0) = (0, 0, 0) and the action-value is initialized at
zero for all a, s. Assuming a(0) = a1, a(1) = a2, and a(2) = a, the first three steps
are given by:

Step 1:

s(0) = (0, 0, 0)

a(0) = a1

r(0) = 52 + 42 + Jπ2/32

s(1) = (0, 0, π/4)

hence
Q1((0, 0, 0), a1) = 0.5(r(0) + 0)

Step 2:

s(1) = (0, 0, π/4)

a(1) = a2

r(1) = 52 + 42 + Jπ2/32

s(2) = (0, 0, 0)

hence
Q2((0, 0, 0), a2) = 0.5(r(1) + 0)

Step 2:

s(2) = (0, 0, 0)

a(2) = a1

r(2) = 52 + 42 + Jπ2/32

s(3) = (0, 0, π/4)

hence
Q3((0, 0, 0), a1) = 0.5r(0) + 0.5(r(2) + 0)

[35%]

8


