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Question 1

(a)
V(z, k) = min{c(x,u) + V(rgi1, k+ 1)}

u

= muin {c(z,u) + V(f(z,u),k+1)}
V(QJ, h) = Jh(xh)

The value function V'(x,k) is the minimum remaining cost from step & onwards,
given that x, = x.

Advantages: Can be used to derive analytical expressions for the optimal policy
(e.g. LQR problem). Can reduce the computational complexity when xy, u; take
discrete, finite values.

Disadvantages: computational cost increases exponentially with increasing number
of states. [10%)]

(b) V(2,0) is the minimum cost for optimal control problem formulated with initial
condition z.
V(x,h) = Jy(x) is the terminal cost with z;, = . [15%]

(c) (i) Using the candidate value function V(z, k) = 22X}, where X}, > 0 the Dynamic
Programming equation gives

22X, = min {x2 +u? + (ax + u)szH}
X 2 Xji1)?
=%+ $2042Xk+1 + min { (\/1 + Xp1u + %) — M}
u k+1

I+ Xiq1
2 (O‘Xk+1)2 2
=z |1— —F +a“X
( 0Bl L

So the iteration is

with the terminal condition X; = A . Note that X, > 0 for all k& also holds
with this iteration so V(z, k) = 22X} is a valid candidate value function. [25%]



(ii) We need to solve w.r.t. X the equation
X 1 (aX)Q + 2X
=(1- a
1+ X

X2—a?X-1=0

which is equivalent to

This has solutions

X_an:\/a4+4
=—

and we choose the positive solution

a2+\/m

X =
2
The optimal cost is V(zg,0) = (20)?X. [10%]
(iii) X3 =1/2, and from the iteration we have X, = 13/12.
The optimal cost is J = (x)*Xy = (1/2)? x (13/12) = 13/48 [10%]

(d) Note that z* = r, u* = r(1 — «) is an equilibrium point of the system. Using the
transformation u = u — u*, £ = x — x* the system becomes

Ty = aZg + Uy

and the cost is

[e.9]

> (@ + i)

k=0

i.e. the formulation is as in part (c)(ii) and hence the value of X is the same as in
that part. The optimal control input is

- X
R
which is equivalent to
* X *
Up = u —oz1+X(xk—x)
The cost function considered is relevant when x* is a desired operating point for the
system. [30%)]



Question 2

(a)

The Hs norm of G, denoted as ||G||2, is defined as

IGI = [ trace {6} d

—00

The Ho, norm of G, |G|/, can be defined in two equivalent ways:

o Gl = sup, 7(G(jw)
o (Gl = supssg 1952 = sup, . 122 where (s) = G(s)i(s)

[10%)]
Comparing with the formulation in the data sheet for an H, optimal control problem
we have
0 1 0 0
=[os ] m=lv] me Y]
Ci=[20], Co=[1 0]
Denoting
a p
X =
{ B }

and substituting in CARE we get
a B1[0 1 00][a B 40 a B[]0 0][a B
Lo ol e 0 S Le o -0 I s )

Hence 0 0 0 L0 2 3
Q vl
o)l 5] o 0] 15 ]

We therefore have

4—-p=0 = B=2
a—pFy=0 = a=14
28—7=0 = y=2

Y = { a b }
B A
and substituting in FARE we get

Sl a o] (5 S (o S ]-[5 Sl o] 5 5]

Then denoting



This gives

1-5=0 = p=1
J-pa=0 = j=v2
20-a=0 = a=V2

The matrices Ak, B, Ck in the state space realization of the controller are then as
specified in the data sheet, i.e.

Ax =A—DByF — HC,
Bx=—-H
Cxk=F

where ' = BIX, H=YCYT.
[40%)

(i) This is a full information M., control problem. Hence we need to solve the
corresponding Riccati equation in the data sheet with v = /2. Denoting

-[51
we have
a B170 1 00][a B 40 a 1[0 o a
R P IR R R TR R IS I
Hence R , s
o5 la Sl lo ] ls 2

We therefore have

1 - R
1.

G =5 =0 — a =28

s 1

-7 =0 = j=2x8/

The controller is of the form u = —Fz where F' = BT X
130%)

(ii) Use a bisection algorithm to find the minimum ~ for which the Riccati equation
has a solution. [10%)]

(iii) No, since the Riccati equaiton does not have a positive definite solution. [10%)]



Question 3

(a) Tt is better to penalize Au; because this allows u; to evolve towards a nonzero
constant, which is not penalized. Notice u; must be nonzero to keep y; near the
setpoint ys. [10%]

(b) For N =2, we have

C[crQe o (24100
Mw_{ 0 CTPC}’ f“‘—[—zygpc]

(2 -1 [—2u(k—1)
constant = y!Qys + y!I Pys + u(k — 1)Tu(k — 1)
[25%)]
(¢) The system can be written as

1 — Bug = Azg = Ax(k)
T9 — Az — Bu; =0

or equivalently

€
I 0 —B 0| |z [Ax(k)
A W
) i ~ Lw B

while the constraints can be written as

—1<wuy—ulk—1)<1
—1§u1—u0§1

or equivalently

00 1 0] |n 1+u(k—1)
00 =1 0] |zaf o 1= u(k —1)
00 -1 1 up| — 1
00 1 —1] |w 1

G h

where in the last equation the inequality is element-wise.

It follows that the control problem is equivalent to

TMm 0 T T
0 {0 Mu]eJr[fx 1110

min
0
subject to
A9=1B
GO <h

which is in the standard QP form. [25%)]

>



(d)

The QP is strictly convex if M, and M, above are positive definite. It can be readily
verified that M, is positive definite. This can be done by computing its eigenvalues,
or by checking that the principal minors of M, ([M,];; = 2 and det M,, = 1) are
both positive. M, is positive definite it CTQC' and C'TPC' are both positive definite.
This will be satisfied if ) and P are positive definite and C' is full column rank (a
rather restrictive assumption). If the QP is strictly convex, then the optimal MPC
law u(k) = uy(z(k),u(k — 1)) is unique. [15%)]

We can eliminate x; and x5 from the decision variables by writing

] P P

=Lip 5] i)
Hence

cCB 01'[Q o][CB 0 .
T _ o7 }
0IM.0, = 0! [C’AB C’B} {O P] {CAB C’B] 0, + non-quadratic terms

The QP is now only in the decision variables 6. For it to be strictly convex, it is
sufficient that @ and P be positive definite. [25%)]



Question 4

(a) A simple cost function that satisfies the requirements is

Hoo) = [ (g = alt)? + = yl6) + ot + G0 b

7

-~

r(s,a)
The problem is episodic because even though it has an infinite time horizon, there is
a stopping set S that can be reached in finite time and for which there is an action
a(t) that guarantees r(s(t),a(t)) = 0 and s(t) € S after the stopping set is reached.
In our case,
S ={(z,u,0) ER®|x =25,y = ys}

and for a = (v,w) = (0,0) we have

s(to) € §,a=(0,0) = 5(t) =0,7(s(t),a(t)) =

= s(t) € S,r(s(t),a(t)) =

for all t > t,. [20%)]

(b) The state and action spaces are continuous, and hence very large. We cannot apply
tabular RL, and must instead rely on more advanced methods (e.g., actor-critic
methods) that use a function approximation for the action-value function. Such
methods can be difficult to fine tune due to their sensitivity to hyperparameter
choices. [10%]

(c) Choosing p = +/2 implies that, starting from (x,y6) = (0,0,0), the robot can only
move between integer values of z, y; furthermore, it can only face directions given
by 6 = kn/4 for some k. This means that the state space is discrete (countable)
and the action space is finite. We can apply tabular RL.

The state transitions are easily found by integrating the states while each action is
taken. We have

s(t) if a(t) = ag

(@(t), y(t),6(t) + m/4) if a(t) = a,

s(t+1) = (2(t), y(t), 6(t) — 7/4) if a(t) = a,
(z(t) 4+ cosO(t),y(t) + sin6(t), 6(t)) if a(t) = a3, 0(t) = kr/2

(z(t) +V2cos0(t),y(t) +2sin0(t),0(t)) if a(t) = as,0(t) = kr/2 + 7 /4

(alternatively, the state transitions above can be explained with a diagram of the
possible movements of the robot).

Hence we can reformulate the problem with the cost

D (@(t) —xp)” + (y(t) = yp)* + clalt), 6(t))
t=0
with
0, a = ag
Ly(a\2 0 _ 7.2 _
c(a,0) = fo 5 g4M c2lt JL /32, a = ay,as
0 3 lidt = 7, a=as,0=kn/2
CMO2dt =M,  a=as0=kn/2+m/4

Notice the problem is still episodic since the target states are integer valued. [35%)]
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(d) Q-learning works by updating an initial guess of the action-value function Qy(s, a)
according to

Qua(s(t), a(t)) = (1 = a)Qu(s(t), a(t)) + a(r(t) +min Q(s(t + 1), a))
if (s(t),a(t)) is visited at time ¢ during an observed trajectory of the robot, and

Qua(s(t),a(t)) = Qu(s(t), a(t))

if (s(t),a(t)) is not visited at that time. The action a(t) is obtained by sampling
actions from the e-greedy policy.

The problem considers a = 0.5, s(0) = (0,0, 0) and the action-value is initialized at
zero for all a, s. Assuming a(0) = a1, a(1) = aq, and a(2) = a, the first three steps
are given by:

Step 1:

s(0) = (0,0,0)

a(0) = a4

r(0) = 5% + 4> + Jn? /32

s(1) = (0,0,7/4)
hence

Ql((oa 07 0)7 al) =0 5(T(O) + 0)

Step 2:

s(1) = (0,0,7/4)

a(l) = ay

r(1) = 5%+ 4> + Jn? /32

s(2) = (0,0,0)
hence

QQ((Oa 07 0)7 a2) =0 5(7n(1) + O)

Step 2:

s(2) = (0,0,0)

a(2) = a;

r(2) = 5%+ 4> + Jn? /32

5(3) = (0,0, 7/4)
hence

@5((0,0,0),a1) = 0.57(0) + 0.5(r(2) 4+ 0)

35%]



