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1 Consider the system

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) (1)

where 𝑥𝑘 ∈ R, 𝑢𝑘 ∈ R for 𝑘 = 0, . . . , ℎ − 1, and 𝑥ℎ ∈ R . Consider the optimal control
problem

min
𝑢0,...,𝑢ℎ−1

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) (2)

where

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) = 𝐽ℎ (𝑥ℎ) +
ℎ−1∑︁
𝑘=0

𝑐(𝑥𝑘 , 𝑢𝑘 )

and 𝑥0 is a given initial condition.

(a) Write down the dynamic programming equation for this problem and explain what
is meant by the value function 𝑉 (𝑥, 𝑘). [10%]

(b) Explain the significance of 𝑉 (𝑥, 0) and 𝑉 (𝑥, ℎ). Also discuss advantages and
disadvantages of dynamic programming. [15%]

(c) Consider now the system
𝑥𝑘+1 = 𝛼𝑥𝑘 + 𝑢𝑘

associated with the optimal control problem (1)-(2) with cost function

𝐽 (𝑥0, 𝑢0, . . . , 𝑢ℎ−1) = 𝜆𝑥2
ℎ
+
ℎ−1∑︁
𝑘=0

(
𝑥2
𝑘
+ 𝑢2

𝑘

)
where 𝛼 ∈ R, 𝜆 ∈ R are constants.

(i) Derive, using the dynamic programming equation, an iteration that can be
used to find the value function for each 𝑘 . [25%]

(ii) Find an expression for the value the optimal cost will tend to as ℎ → ∞. [10%]

(iii) Find the optimal cost when ℎ = 1, 𝛼 = 𝜆 = 1/2 with initial condition 𝑥0 = 1/2. [10%]

(d) Consider the optimal control problem in part (c) but with the cost now given by

𝐽 (𝑥0, 𝑢0, 𝑢1 . . .) =
∞∑︁
𝑘=0

(
(𝑥𝑘 − 𝑟)2 + (𝑢𝑘 − 𝑟 (1 − 𝛼))2

)
(3)

where 𝑟 ∈ R is a constant. Find the optimal cost and the optimal control input 𝑢𝑘 for this
problem. Discuss also when the cost function in (3) is a relevant one to consider. [30%]
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2 (a) Explain what is meant by the H2 norm and the H∞ norm of a transfer function
𝐺 (𝑠). [10%]

(b) Consider the system

¤𝑥1 = 𝑥2

¤𝑥2 = 𝑤1 + 𝑢
𝑧1 = 2𝑥1, 𝑧2 = 𝑢

𝑦 = 𝑥1

where 𝑥1(𝑡) ∈ R, 𝑥2(𝑡) ∈ R are the states of the system, 𝑤1(𝑡) is an external disturbance,
and 𝑢(𝑡) is the control input. Consider also a controller with transfer function 𝐾 (𝑠) such
that 𝑢̄(𝑠) = 𝐾 (𝑠) 𝑦̄(𝑠), where 𝑢̄(𝑠), 𝑦̄(𝑠) are the Laplace transforms of the signals 𝑢, 𝑦
respectively.

Find a controller 𝐾 that will minimize the H2 norm of the closed-loop transfer function
from 𝑤1 to 𝑧, where 𝑧 = [ 𝑧1 𝑧2 ]𝑇 . [40%]

(c) Consider the system in part (b) but with 𝑦 = 𝑥1 replaced by

𝑦1 = 𝑥1, 𝑦2 = 𝑥2

and the controller 𝐾 (𝑠) satisfies 𝑢̄(𝑠) = 𝐾 (𝑠) 𝑦̄(𝑠) where 𝑦 = [ 𝑦1 𝑦2 ]𝑇 .

(i) Find a controller 𝐾 that will lead to an H∞ norm that is less than
√

2, for the
closed-loop transfer function from 𝑤1 to 𝑧 . [30%]

(ii) Describe a procedure that can be used to minimize the H∞ norm considered
in part (c)(i). [10%]

(iii) Explain if there exists a controller 𝐾 (𝑠) such that the H∞ norm considered in
part (c)(i) is less than 1. [10%]
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3 Consider a discrete-time system given by

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘)

(4)

where 𝑥(𝑘), 𝑢(𝑘) and 𝑦(𝑘) are vector-valued states, inputs and outputs of the system. We
would like to find a predictive receding horizon control law for 𝑢(𝑘) to drive the output
𝑦(𝑘) towards a (nonzero) setpoint 𝑦𝑠. At each time index 𝑘 > 0, we must solve the finite
horizon optimal control problem given by

min
𝑢0,...,𝑢𝑁−1

(𝑦𝑁 − 𝑦𝑠)⊺𝑃(𝑦𝑁 − 𝑦𝑠) +
𝑁−1∑︁
𝑖=0

(
(𝑦𝑖 − 𝑦𝑠)⊺𝑄(𝑦𝑖 − 𝑦𝑠) + Δ𝑢

⊺
𝑖
Δ𝑢𝑖

)
(5)

subject to

−1 ≤ Δ𝑢𝑖 ≤ 1, 𝑖 = 0, . . . , 𝑁 − 1

𝑥0 = 𝑥(𝑘)
𝑢−1 = 𝑢(𝑘 − 1)

(6)

where Δ𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1. Recall 𝑥𝑖, 𝑢𝑖 and 𝑦𝑖 denote predicted variables at time index 𝑖
within a prediction window.

(a) Considering the objective of the problem, explain why it is desirable to penalize
Δ𝑢
⊺
𝑖
Δ𝑢𝑖, rather than 𝑢⊺

𝑖
𝑢𝑖, in the cost function (5). [10%]

(b) Let 𝜃𝑥 = [𝑥⊺1 , . . . , 𝑥
⊺
𝑁
]⊺ and 𝜃𝑢 = [𝑢⊺0 , . . . , 𝑢

⊺
𝑁−1]

⊺. Find matrices 𝑀𝑥 and 𝑀𝑢 and
vectors 𝑓𝑥 and 𝑓𝑢 such that the expression being minimized in (5) is equal to

𝜃
⊺
𝑥 𝑀𝑥𝜃𝑥 + 𝜃

⊺
𝑢 𝑀𝑢𝜃𝑢 + 𝑓

⊺
𝑥 𝜃𝑥 + 𝑓

⊺
𝑢 𝜃𝑢 + constant (7)

The 𝑀 and 𝑓 variables in (7) should be written in terms of the system matrices in (4), the
setpoint 𝑦𝑠, and the data 𝑥(𝑘), 𝑢(𝑘 − 1). For simplicity, use 𝑁 = 2. [25%]

(c) Hence show that the problem (5)-(6) can be formulated equivalently as a standard
Quadratic Programming (QP) problem in the decision variable vector 𝜃 = [𝜃⊺𝑥 , 𝜃

⊺
𝑢 ]⊺. [25%]

(d) State conditions for the QP problem in part (c) to be strictly convex. What does that
imply regarding the uniqueness of the optimal receding horizon control law? [15%]

(e) Show that it is possible to weaken the conditions in part (d) by using the model (4)
to eliminate 𝜃𝑥 from the decision variables of the QP problem. [25%]
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4 The motion of a mobile robot on the plane is described by the kinematic model
¤𝑥
¤𝑦
¤𝜃

 =

sin 𝜃 0
cos 𝜃 0

0 1


[
𝑣

𝜔

]
where 𝑥 and 𝑦 are the Cartesian coordinates of the robot on the plane, 𝜃 is the orientation
of the robot with respect to the 𝑥-axis, 𝑣 is the magnitude of the robot’s forward velocity
(i.e., along the 𝜃 direction) in 𝑚/𝑠, and 𝜔 is the robot’s angular velocity in rad/𝑠. In this
model, 𝑠 = [𝑥, 𝑦, 𝜃]⊺ is the state vector, and 𝑎 = [𝑣, 𝜔]⊺ is the input vector. The robot has
a mass of 𝑀 , and a moment of inertia around its axis of rotation of 𝐽.

Consider the case where 𝑠(0) = [0, 0, 0]⊺, and the objective is to move the robot towards
the target coordinates (𝑥 𝑓 , 𝑦 𝑓 ) = (5, 4) while minimizing the robot’s kinetic energy.

(a) Propose a cost functional for the objective above that results in an episodic optimal
control problem. Explain why the problem is episodic, and state its stopping set. [20%]

(b) Explain the main difficulties in using Reinforcement Learning to solve the episodic
problem above. [10%]

(c) We now assume that the input 𝑎(𝑡) is constructed for 𝑡 ≥ 0 by repeatedly applying
any combination of the following actions:

𝑎0 : apply 𝑣 = 0, 𝜔 = 0 for 1 second;

𝑎1 : apply 𝑣 = 0, 𝜔 = 𝜋/4 for 1 second;

𝑎2 : apply 𝑣 = 0, 𝜔 = −𝜋/4 for 1 second;

𝑎3 :

{
if 𝜃 = 𝑛𝜋/2 for some 𝑛 ∈ Z, apply 𝑣 = 1, 𝜔 = 0 for 1 second;

otherwise, apply 𝑣 = 𝜇, 𝜔 = 0 for 1 second;

(8)

where 𝜇 > 0 is a constant value. By discretizing time with a sampling period of 1 second,
and assuming 𝑠(0) = [0, 0, 0]⊺, find a value for 𝜇 in Eq. (8) that facilitates the application
of Reinforcement Learning to the problem. Describe how 𝑠(𝑘 + 1) is obtained from 𝑠(𝑘)
and 𝑎(𝑘), and propose a cost for the discrete-time problem. [35%]

(d) Explain how the discrete-time problem of part (c) can be solved using 𝑄-learning
with the 𝜖-greedy policy. For a step size 𝛼 = 0.5, write down the first three iterations of
the algorithm assuming that 𝑠(0) = [0, 0, 0]⊺, 𝑎(0) = 𝑎1, 𝑎(1) = 𝑎2 and 𝑎(2) = 𝑎1 are
selected and the action-value is initialized as𝑄0(𝑠, 𝑎) = 0 for all state-action pairs (𝑠, 𝑎). [35%]
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3:  An optimisation based approach to control 

(available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =
∫ T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-
Jacobi-Bellman PDE,

−∂V (x, t)

∂t
= min

u∈U

(
c(x, u) +

∂V (x, t)

∂x
f(x, u)

)
, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = xTQx + uTRu, and JT (x) = xTXTx, if X(t)
satisfies the Riccati ODE,

−Ẋ = Q+XA+ ATX −XBR−1BTX, X(T ) = XT ,

then Jopt = xT0X(0)x0 and uopt(t) = −R−1BTX(t)x(t).

2. For the discrete-time system satisfying xk+1 = Axk+Buk with x0 given and cost function,

J(x0, u0, u1, . . . , uh−1) =
h−1∑
k=0

(
xTkQxk + uTkRuk

)
+ xThXhxh,

if Xk satisfies the backward difference equation,

Xk−1 = Q+ ATXkA− ATXkB(R +BTXkB)−1BTXkA,

then Jopt = xT0X0x0 and optimal control signal, uk = −(R+BTXk+1B)−1BTXk+1Axk.

1



2

3. For the system satisfying,


ẋ

z

y

 =


A

[
B1 0

]
B2[

C1

0

] [
0 0
0 0

] [
0
I

]
C2

[
0 I

]
0




x

w

u

 where



(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimalH2 controller is given by,[
ẋk

u

]
=

[
A−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , and X and Y are stabilising solutions to

0 = XA+ ATX + CT
1 C1 −XB2B

T
2 X (CARE)

and

0 = Y AT + AY +B1B
T
1 − Y CT

2 C2Y (FARE)

(b) The controller given by,

[
ẋk

u

]
=

[
Â−B2F −HC2 −H

F 0

][
xk

y

]

where F = BT
2 X , H = Y CT

2 , Â = A + 1
γ2
B1B

T
1 X , and X and Y are stabilising

solutions to,

XA+ ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

and

Y ÂT + ÂY +B1B
T
1 − Y

(
CT

2 C2 − γ−2F TF
)
Y = 0,

satisfies‖Tw→z‖∞ ≤ γ.
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