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1. (a) i. [20%]The definitions of the state and input increments are:

∆x = x(k)− x(k − 1) ∆u = u(k)− u(k − 1)

The original system is of the form:

x(k + 1) = Ax(k) +Bu(k) z(k) = Cx(k).

For the state update equation:

x(k + 1)− x(k) = Ax(k) +Bu(k)− x(k)

= Ax(k) +Bu(k)− (Ax(k − 1) +Bu(k − 1))

= A(x(k)− x(k − 1)) +B(u(k)− u(k − 1))

∆x(k + 1) = A∆x(k) +B∆u(k).

For the output:

z(k + 1) = C(x(k + 1))

= C(x(k) + ∆x(k + 1))

= Cx(k) + C∆x(k + 1)

= z(k) + CA∆x(k) + CB∆u(k).

Therefore:

F =

[
A 0
CA I

]
G =

[
B
CB

]
.

ii. [15%]Sufficient conditions for convexity: P ≥ 0, Q1 ≥ 0, Q2 ≥ 0, R ≥ 0. (R ≥ 0
sufficient for convexity, but R > 0 needed for uniqueness).

iii. [10%]Convexity is important because it means that a local optimum is also a
global optimum, and that the optimisation problem can be solved efficiently.
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(b) i. [20%]At equilibrium: x(k + 1) = x(k).

=⇒ Ax∞ +Bu∞ = x∞

=⇒ (A− I)x∞ +Bu∞ = 0.

For compatibility with the tracked output reference: Cx∞ = r. So, com-
bined: [

(A− I) B
C 0

] [
x∞
u∞

]
=

[
0
r

]
The matrix [

(A− I) B
C 0

]
should be of full row rank for a solution to exist, and it should be invertible
for the solution to be unique (i.e. also of full column rank).
It is not sufficient simply for the number of outputs to be equal to the
number of inputs.

ii. [10%]∆x∞ = 0, ∆u∞ = 0 (steady state), z∞ = r (tracking reference).

iii. [10%]Modify the cost function by substituting zi ← zi − r, zN ← zN − r. No
further changes needed since ∆x∞ = 0 and ∆u∞ = 0!

iv. [15%]Advantage:
• No need for target calculator for reference tracking.

• Automatic integral action (zero offset to constant disturbances)

• Can constrain slew rates easily

• Damping controlled by R because it suppresses input moves
Disadvantage:
• Constraints may be defined on x and u rather than ∆x and ∆u

• Computing differences ∆x might amplify sensor noise

• Response to setpoint changes and disturbances may be sluggish

• Can be more difficult to tune satisfactorily (oscillatory responses easy
to obtain).

Differences in computational load and memory requirements with respect
to MPC with a “standard” model are problem specific, and likely to be
insignificant. The computational bottleneck is solution of the (contrained)
quadratic program. If the state is eliminated using the prediction matrices,
then the number of decision variables in the optimisation problem is the
same as for “standard” MPC.

2. (a) i. [20%]The receding horizon principle in the context of model predictive control is
as follows:
1) The current state is measured.
2) Using a model of the plant to make predictions of future states, a fi-
nite horizon (constrained) optimal control problem is solved with the state
trajectory starting at the current measured state.
3) The first part of the optimal input trajectory is applied to the plant, and
the rest is discarded
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4) At the next time step a new optimal control problem is solved over a
horizon of the same length (so now viewing one step further into the future,
hence “receding”), the first part is applied to the plant, and the process is
repeated.

ii. [10%]The question specifically asks for the advantages and disadvantages of reced-
ing horizon control with respect to infinite horizon control. It is not sufficient
to simply state advantages/disadvantages of predictive control with respect
to arbitrary other control schemes.
• Advantages
– Receding horizon control enables a computationally tractable numeri-

cal computation of the control policy in cases where an infinite horizon
control policy is not computationally tractable. For example, when
no analytical solution exists and “gridding” is impractical. In these
cases, the receding horizon control can be viewed as an “approxi-
mation” of the infinite horizon control policy if the latter is what is
actually desired. Examples of such situations:
∗ constraints on inputs and/or states;

∗ nonlinear plant models;

∗ discrete-valued/switched/hybrid systems;

– When a system is time-varying an infinite horizon may not be appro-
priate

• Disadvantages
– More care must be taken to ensure closed-loop stability and to analyse

closed-loop performance.

– Computational cost can still be prohibitive for a given application.

– Numerical computation of a receding horizon control policy may be
viewed as inappropriate when there is an analytical solution to the
infinite horizon problem.

(b) i. [20%]
x0
x1
x2
x3

 =


I
A
A2

A3

x(k) +


0
B
AB B
A2B AB B


u0u1
u2



Φ =


I
A
A2

A3

 , Γ =


0
B
AB B
A2B AB B


ii. [15%]

F =


C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 T

 , G =


D 0 0
0 D 0
0 0 D
0 0 0

 , g =


e
e
e
t


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iii. [10%]

F (Φx(k) + Γu) +Gu ≤ g

(FΓ +G)u ≤ g − FΦx(k)

(c) i. [10%]The admisible set is the set of x such that Cx + Du ≤ e, i.e. that (C +
DK)x ≤ e. A set T is positively invariant with respect to the the system
x(k + 1) = (A + BK)x(k) if x(k) ∈ T =⇒ x(k + 1) ∈ T. Therefore, a
positively invariant admissible set is:

T = {x : (C +DK)x ≤ e, (A+BK)x ∈ T}

Alternatively, and equivalently:

T =
{
x : (C +DK)(A+BK)ix ≤ e, ∀i = 0, . . . ,∞

}
.

ii. [15%]If the terminal constraint is admissible then the control law u = Kx is
always an admissible action after the end of the horizon for at least one
step. If the terminal constraint is also positively invariant, applying the
control law u = Kx after the end of the prediction horizon will guarantee
constraint satisfaction over an infinite horizon.
This means that if the feasible (optimal) control input is applied to the
plant at the current time step, there is an N -step sequence of inputs that is
feasible at the next time step, constructed by removing the first element u0
from the beginning previous input sequence and appending uN+1 = KxN at
the end. This guarantees recursive feasibility of the closed-loop system with
the receding horizon control law and is usually a key step towards proving
closed-loop stability.
NB. On its own the terminal constraint is not sufficient to provide a theo-
retical guarantee of asymptotic stability and is usually used in conjunction
with other constructs such as a specially designed terminal cost.

3. (a) i. [20%]Dynamic programming (in a discrete time setting) is a systematic proce-
dure for transforming an optimisation over a sequence of h inputs into h
minimisations over 1 inputs (but all states).
The minimisation “for all states” can be done by enumeration (if there are a
finite number of possible states), or analytically if an analytical expression
exists. This enables a “backwards recursion” to find a sequence of value
functions.
The limitation is that it must be possible to perform the 1-step minimisa-
tion over “all” steps, and the procedure cannot always be implemented in
practice. Problems can be approximated by “gridding” and enumeration,
but complexity can grow exponentially (“curse of dimensionality”).
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ii. [20%]

Vd(x, k) = min
uk,...,uh−1

(
h−1∑
i=k

cd(xi, ui) + Jh(xh)

)

= min
uk,...,uh−1

(
cd(xk, uk) +

h−1∑
i=k+1

cd(xi, ui) + Jh(xh)

)

= min
uk

min
uk+1,...,uh−1

(
cd(xk, uk) +

h−1∑
i=k+1

cd(xi, ui) + Jh(xh)

)

= min
uk

cd(xk, uk) + min
uk+1,...,uh−1

(
h−1∑
i=k+1

cd(xi, ui) + Jh(xh)

)
= min

uk
(cd(xk, uk) + Vd(xk+1, k + 1))

(b) i. [40%]

V (x, t) = min
u

(c(x, u)δt+ V (x+ f(x, u)δt, t+ δt)) +O(δt2)

V (x+ δx, t+ δt) = V (x, t) +
∂V (x, t)

∂x
δx+

∂V (x, t)

∂t
δt+ higher order terms

V (x, t) = min
u

(
c(x, u)δt+ V (x, t) +

∂V (x, t)

∂x
δx+

∂V (x, t)

∂t
δt

)
+O(δt2)

Note that V (x, t) does not depend on u:

0 = min
u

(
c(x, u)δt+ 0 +

∂V (x, t)

∂x
f(x, u)δt+

∂V (x, t)

∂t
δt

)
+O(δt2)

Divide by δt and rearrange:

−∂V (x, t)

∂t
= min

u

(
c(x, u) +

∂V (x, t)

∂x
f(x, u)

)
+
O(δt2)

δt

Take limit as δt→ 0:

−∂V (x, t)

∂t
= min

u

(
c(x, u) +

∂V (x, t)

∂x
f(x, u)

)
ii. [20%]

f(x, u) = 2x+ u

c(x, u) = x2 + u2

V (x, t) = p(t)x(t)2
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Noting that we are taking partial derivatives and not total derivatives:

∂V (x, t)

∂t
= ṗ(t)x(t)2

∂V (x, t)

∂x
= 2p(t)x(t)

By substitution:

−ṗ(t)x(t)2 = min
u

(x(t)2 + u(t)2 + 2p(t)x(t)(2x(t) + u(t)))

= min
u

(x(t)2 + u(t)2 + 4p(t)x(t)2 + 2p(t)x(t)u(t))

d

du

(
x(t)2 + u(t)2 + 4p(t)x(t)2 + 2p(t)x(t)u(t)

)
= 2u(t) + 2p(t)x(t)

Therefore minimum achieved when u(t) = −p(t)x(t).

−ṗ(t)x(t)2 = x(t)2 + p(t)2x(t)2 + 4p(t)x(t)2 − 2p(t)2x(t)2

−ṗ(t) = 1− p(t)2 + 4p(t)

Check from datasheet:

A = 2, B = 1, Q = 1, R = 1, X = p.

−Ẋ = Q+XA+ ATX −XBR−1BTX

−ṗ = 1 + (2p+ 2p)− p2.

Boundary condition: p(T ) = 10.

4. (a) [20%]Let
y = C(sI − A)−1Bu

‖y‖∞ ≤
1

2π
‖G(s)‖2‖u‖2.

where:
‖y‖∞ = sup

t

√
y(t)Ty(t)

i.e. is the maximum magnitude of y over all time.

‖u‖2 =

√∫ ∞
0

u(t)Tu(t) dt

is effectively the energy in the input signal.
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(b) i. [25%]From the definition in the question

Q =

∫ ∞
0

eA
T τCTCeAτ dτ.

Substitute this into the Lyapunov equation:

ATQ+QA+ CTC = 0

AT
(∫ ∞

0

eA
T τCTCeAτ dτ

)
+

(∫ ∞
0

eA
T τCTCeAτ dτ

)
A+ CTC = 0∫ ∞

0

AT (eA
T τCTCeAτ ) + (eA

T τCTCeAτ )A dτ + CTC = 0∫ ∞
0

d

dτ
(eA

T τCTCeAτ ) dτ + CTC = 0[
eA

T τCTCeAτ
]∞
0

+ CTC = 0

0− CTC + CTC = 0

(Using stability of system to conclude that as t → ∞, eAt → 0). This
confirms the required result.

ii. [20%]Q > 0 implies that for every x 6= 0 there exists a t ∈ [0,∞) such that
CeAtx 6= 0. If (A,C) were not observable, there would exist an x 6= 0 such
that CeAtx = 0 for all t. Therefore (A,C) must be observable.

iii. [5%]The impulse response g(t) = CeAtB.

iv. [30%]The H2 norm of the plant ‖G(s)‖2, by Parseval’s theorem is:
√

2π‖g(t)‖2.

Define Bi to be the i-th column of B and gi(t) to be the response to an
input on the i-th input, i.e. gi(t) = CeAtBi.

‖gi(t)‖2 =

√∫ ∞
0

BT
i e

AT tCTCeAtBi dt

=

√
BT
i

(∫ ∞
0

eAT tCTCeAt dt

)
Bi

=
√
BT
i QBi

‖g(t)‖22 =
∑
i

‖gi(t)‖22

=
∑
i

BT
i QBi

= trace(BTQB)

‖G(s)‖2 =
√

2π
√

trace(BTQB)
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The correct answer can also be achieved by defining:

V = x(t)TQx(t)

and letting z = V̇ + yTy.

V̇ + y(t)Ty(t) =
d

dt

(
x(t)TQx(t)

)
+ y(t)Ty(t)

= x(t)TATQx(t) + x(t)QAx(t) + x(t)TCTCx(t)

= x(t)T (ATQ+QA+ CTC)x(t)

∫ ∞
0

z(t) dt =

∫ ∞
0

V̇ (t) + y(t)Ty(t) dt = x(t)T (ATQ+QA+ CTC)x(t)

[V (t)]∞0 + ‖y‖22 = x(t)T (ATQ+QA+ CTC)x(t)

V (∞)− V (0) + ‖y‖22 = 0

=⇒ ‖y‖22 = x(0)TQx(0)

Then using
‖gi(t)‖22 = BT

i QBi

the same arguments as above can be followed.
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Examiners report

Q1 MPC Convexity and Target Tracking
23 attempts, average mark 13.42/20, Maximum 20, Minimum 7.

A popular and straightforward question, well-answered by most candidates, although some
candidates struggled with the derivation of the linear velocity form. Most appreciated the
importance of convexity of the cost function. Some candidates erroneously thought that an
equal number of inputs and outputs was sufficient for a unique equilibrium pair (ignoring the
matrix invertibility), and a small minority erroneously thought that the terminal weighting
matrix should be changed to enable reference tracking.

Q2 Receding Horizon and Constraints Formulation
29 attempts, average mark 14.97/20, Maximum 19, Minimum 10.

The most popular question, attempted by all candidates, and reasonably well answered by most.
All candidates were able to satisfactorily describe the receding horizon principle, although some
failed to mention that the predictions should be made starting from a measurement or estimate
of the current plant state. Unfortunately a sizeable minority of candidates chose to describe
the advantages/disadvantages of MPC in general (as has been often asked in previous years)
rather than comparing receding horizon versus infinite horizon control. The prediction matrix
formulation questions were generally well answered, contributing to the high average mark and
low variation for this question, although some candidates did not correctly form the constraint
matrices. Justifications for the invariant, admissible terminal constraint were mostly vague with
very few candidates mentioning recursive feasibility in closed loop with the receding horizon
control law, and a minority instead described conditions on terminal cost matrices!

Q3 Dynamic Programming and the HJB Equation
25 attempts, average mark 12.60/20, Maximum 18, Minimum 2.

The second most popular question. The description of dynamic programming was generally
well answered, as was the derivation of the discrete-time dynamic programming equation. The
derivation of the HJB equation was more divisive: in general, candidates were able to do
it correctly or not, with little middle ground. Application to the LQR problem posed more
difficulties. Many candidates evaluated a total derivative rather than a partial derivative of the
value function with respect to time, and thus obtained an incorrect answer. A few candidates
correctly identified this was a finite-horizon LQR problem and applied the Riccati equation
from the data sheet, for which partial credit was given for the correct final answer, despite the
question specifically requesting a derivation.

Q4 Signal Norms, Controllability and Infinite Horizons
9 attempts, average mark 12.00/20, Maximum 19, Minimum 1.

The least popular and most divisive question: either answered very well, or with just a token
effort. Most candidates correctly identified how the H2 norm related the input signal to the
output signal, although worryingly some confused the definition of the L∞ norm of the output
with that of the H∞ norm. Most candidates were able to show that the infinite-horizon integral
could be computed by solving the Lyapunov equation, but fewer were able to make a coherent
argument regarding the observability of the system (although there were also some pleasing
correct answers). Derivation of the H2 norm in terms of the solution to the Lyapunov equation
was divisive: candidates were generally either able to (following one of two valid methods covered
in the course), or not able to, with little in the way of middle ground.
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