
4F3 cribs

Question 1

(a) Let us denote x0 , x1, . . . , xN the sequence of nodes along the optimal path from
node x0 to node xN . By Bellman’s Principle of Optimality, the truncated sequence
x0 , x1, . . . , xN−1 is the optimal path from x0 to xN−1 as well (truncated problem).
This principle allows to take advantage of recursive algorithms in optimization.

(b) The sequence of graphs in Figure 1 represents the main steps of the dynamic pro-
gramming computation. At each step we update the cost to go, whose values are
represented within each node.
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(c) The minimal-time routing paths needs to be recalculated, with the delay per edge
increased by 1, as paths with more hops (intermediate nodes) will be penalized more.
After recalculating there are some nodes with two paths with the same minimal cost.

(d) Running back and forth on the edge with negative weight makes the cost to go
smaller and smaller. That is, with a negative edge the path length cost has no
minimum.

(e.i) Define the index set I = {1, 2, . . . , 8}associated with each node. For a path from
node 1 to node 7, the indicator variable xij is defined as xij = 1 if there exists an
edge from i to j that belongs to the path and 0 otherwise, i.e. the indicator set
identifies the path. Every path from node 1 to node 7 satisfies the following three
conditions

C1: there is a single edge entering the final node:

∑

i∈I

xi7 = 1 ;

C2: there is a single edge leaving the initial node:

∑

i∈I

x1i = 1 ;

C3: the number of edges entering the node j and the number of edges leaving the
node j are the same: for all j ∈ I such that j ̸= 0 and j ̸= 7,

∑

i∈I

xij −
∑

i∈I

xji = 0 .

Subject to these constraints, the suggested cost associated to the path from node 1
to node 7 is given by

J =
∑

i∈I,j∈I

wijxij .

Summarizing, the mathematical optimisation problem reads

min
∑

i∈I,j∈I

wijxij subject to xij ∈ {0, 1}and C1, C2, C3 .

(e.ii) For xi,j ≥ 0 and continuous, this is a linear program, since cost function and con-
straints are all linear.
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Question 2

(a) The system can be written as follows

ẋ = Ax+B1w1 +B2u y = Cx+ w2

where

A =

[
−k12 − d k21

k12 −k21 − d

]
=

[
−11 20
10 −21

]

and

B1 =

[
0
1

]
, B2 =

[
1
0

]
, C =

[
0 1

]
.

We can now derive the transfer function as

Tw1→ y = C(sI −A)−1B1 =
s+ 11

s2 + 32s+ 31

(b) The H2 norm is defined as follows

∥Tw1→ y∥22 =
∫ ∞

−∞
trace

{
Tw1→ y(jω)

TTw1→ y(jω)
}
dω

Its physical meaning in terms of system performance is given by the expression

∥y∥∞ ≤
1√
2π
∥Tw1→ y∥2∥w1∥2 .

Thus, ∥Tw1→ y∥2 provides a bound on the largest amplification between the energy
of the disturbance w1 and the magnitude of the output y.

The H∞ norm satisfies

∥Tw1→ y∥∞ = sup
ω

σ̄(Tw1→ y(jω)).

Its physical meaning is well described by the expression

∥Tw1→ y∥∞ = sup
w1

∥Tw1→ yw1∥2
∥w1∥2

= sup
w1

∥y∥2
∥w1∥2

.

Thus, ∥Tw1→ y∥∞ provides a bound on the largest amplification between the energies
of the disturbance w1 and the output y.

(c) We have that 1√
2π
∥Tw1→ y∥2 =

√
BT

1 LB1 where L = LT solves

ATL+ LA + CTC = 0 (L is the observability Gramian).

From the latter, taking L =
[
L1 L2
L2 L3

]
we have

[
−11 10
20 −21

] [
L1 L2

L2 L3

]
+

[
L1 L2

L2 L3

] [
−11 20
10 −21

]
+

[
0 0
0 1

]
= 0

which gives

L =

[
0.0504 0.0554
0.0554 0.0766

]
.

Thus, √
BT

1 LB1 =
√
0.0766 ≃ 0.2768
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(d.i) Let P (s) be a generalized plant with performance input/output pair w and z and
control input/output pair u and y. Tthe H2 optimal control problem corresponds
to finding the stabilizing controller u = K(s)y that minimizes ∥Tw→ z(s)∥2 in closed
loop. Using linear fractional transformations, Tw→ z(s) = Fl(P (s), K(s)) therefore
the H2 optimal control problem corresponds to

min
K(s) stabilising

∥Fl(P (s), K(s))∥2

(d.ii) Given the output performance z, the generalized plant is given by

⎡

⎣
ẋ
z
y

⎤

⎦=

⎡

⎢⎢⎣

A
[
B1 0

]
B2[

C1

0

]
0

[
0
I

]

C2

[
0 I

]
0

⎤

⎥⎥⎦

⎡

⎣
x
w
u

⎤

⎦

where C2 = C1 =
[
0 1

]
. All other matrices have been already defined above.

(d.ii) From the datasheet, we need to compute

Ak = A−B2F −HC2 Bk = −H = Y CT
2 Ck = F = BT

2 X

Thus,

Ak =

[
−11.0491 19.8387
10.0000 −21.0747

]
Bk =

[
−0.1072
−0.0747

]
Ck =

[
0.0491 0.0542

]
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Question 3

(a) minθ
1
2θ

TQθ + cT θ subject to Aθ ≤ b

(b) (i) Let P ≥ 0 be steady state solution to the Ricatti equation in datasheet, ie

P = Q + ATPA−ATPB(R +BTPB)−1BTPA

and put K = −(R + BTPB)−1BTPA, which is the optimal solution, a state
feedback gain, for the unconstrained infinite horizon case.

Now find M, b s.t. the set {x : Mx ≤ b}is constraint admissible and invariant
with respect to the control u = Kx (i.e. Mx ≤ b =⇒ |Kx| ≤ U and
Mx ≤ b =⇒ M(Ax +BKx) ≤ b).

Now solve the MPC problem

min
u0,u1

1∑

k=0

(xT
kQxk + uT

kRuk) + xT
2 Px2

subject to x1 = Ax0 +Bu0 , x2 = Ax1 +Bu1 = A2x0 + ABu0 +Bu1

i.e.

min
u0,u1

xT
0 Qx0 + (Ax0 +Bu0 )

TQ(Ax0 +Bu0 )+

(A2x0 + ABu0 +Bu1)
TP (A2x0 + ABu0 +Bu1) + u0Ru0 + u1Ru1

= const + min
u0,u1

[
u0

u1

]T [
BTQB +BTATPAB +R BTATPB

BTPAB BTPB +R

] [
u0

u1

]

+2
[
xT
0 A

TQB + xT
0 A

2TPAB xT
0 A

2TPB
] [u0

u1

]

s.t

⎡

⎣
I
−I

MAB B

⎤

⎦
[
u0

u1

]
≤

⎡

⎢⎢⎢⎢⎣

1
1
1
1

b− A2x0

⎤

⎥⎥⎥⎥⎦

(ii) The control above is suboptimal because of the added constaint that Mx ≤ b
at step 2. Increasing N pushes this constraint further into the future, and the
resulting controller wii be closer to optimal, and eventually optimal.

(iii) For large x0 it may be impossible to get inside the control invariant set in 2 time
steps.
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Question 4

(a) Q(s, a) is the cost of taking action a from state s and taking optimal actions thereafter.
It enables you to find the optimal action, by enumeration, without knowing the model
or reward.

(b) (i)

1→ ← 2
15→ ← 3

↓ ↓
↑ ↖ ↑
4

117→ 5 6
↓ ↓
↑ ↑ ↑
7→ ← 8→ ← 9

These are optimal, since they satisfy

Q(s, a) = c(s) + min
a′

Q(s′, a′)

in each case (where s′ is that state reached by taking action a at state s.)

(ii) The optimal cost is 13, associated with the path 1 → 4 → 7 → 8 → 9 (and
remain at 9 thereafter).

(iii) After each state action pair has been visited a sufficiently large number of times
Q will have converged to the optimal value. There is then a 5% chance of taking
the suboptimal action 4 → 5, and the same for 8 → 5. There is thus a 10%
chance of an extra cost of at least 100. Hence the cost > 13 + 0.1∗100 = 23.

(iv) For SARSA the iteration is instead

Q(s, a)← c(s) +Q(s′, a′)

where a′ is selected according to the current policy. If this policy is ϵ-greedy,
then actions to states 4 and 8 will be marked with a higher cost and the path
found will be 1→ 2→ 3→ 6→ 9 with an optimal cost of slightly greater than
16.
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Q1. Dynamic programming.

A quite popular question that was attempted by most candidates. Parts (a)-(d) associated
with finding the minimal-time routing path was generally well answered. Part (e) was more
challenging and many candidates had di!culties formulating the constraints associated with
the optimization problem.

Q2. H2 optimal control.

The question was attempted by about two third of the candidates. Part (a) associated with
providing a state space representation and finding a transfer function was generally well
answered. Many candidates had di!culties in part (c) associated with the computation of the
H2 norm. There were also good attempts for part (d) where candidates were asked to
formulate and solve the H2 optimal control problem.

Q3. Model Predictive Control.

A popular question on using MPC to solve the constrained LQR problem. Attempted by most
candidates and with many excellent answers. Most marks were lost by a lack of precision in
answering a). 

Q4 Reinforcement learning

A less popular question, attempted by about half the candidates, comparing Q-learning and
SARSA on a cli" edge walking problem. The basics were well done, but ost marks were lost
on b) parts iii) and iv), with many candidates not grasping the e"ect of using epsilon-greedy
action selection.


