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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 6 May 2014 2 to 3.30

Module 4F3

OPTIMAL AND PREDICTIVE CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4F3 Optimal and Predictive Control data sheet (2 pages)
Engineering Data Book

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Consider the linear discrete-time plant with state x(k), input u(k) and controlled
output z(k) described by

x(k+1) = Ax(k)+Bu(k), z(k) =Cx(k).

(a) Define the state and input increments ∆x= x(k)−x(k−1) and ∆u= u(k)−u(k−1).
If ∆u (rather than u) is to be the manipulated variable determined by the control law, an
equivalent system can be constructed of the form[

∆x(k+1)
z(k+1)

]
= F

[
∆x(k)
z(k)

]
+G∆u(k).

(i) Derive the values of F and G in terms of A, B and C. [20%]

(ii) Let ∆ui denote a prediction of ∆u at time k+ i, ∆xi denote a prediction of ∆x
at time k+ i, and zi denote a prediction of z at time k+ i. Define

∆u =
[
∆uT

0 ∆uT
1 · · · ∆uT

N−1

]T
.

A given predictive controller is designed to minimise the cost function

J(∆x(k),z(k),∆u)=

[
∆xN
zN

]T

P

[
∆xN
zN

]
+

N−1

∑
i=0

[
∆xi
zi

]T [
Q1 0
0 Q2

][
∆xi
zi

]
+∆uT

i R∆ui


State sufficient conditions on P, Q1, Q2 and R that will guarantee that
J(∆x(k),z(k),∆u) is a convex function of ∆u for a given ∆x(k) and z(k). [15%]

(iii) Why is convexity of the cost function important? [10%]

(b) The controller from part (a) must be modified so that the output z tracks a non-zero,
but constant reference r(k) = r.

(i) Assuming a perfect plant-model match and no additional disturbances, derive
an equation that would be satisfied by compatible steady state values x∞ and u∞

(not their respective increments). Specify conditions in terms of A, B, and C under
which a suitable pair (x∞,u∞) will exist for any r. When is this pair unique? [20%]

(ii) Let ∆x∞, z∞ and ∆u∞ be steady-state values achieved by ∆x(k), z(k) and ∆u(k)
respectively when the reference is tracked with zero error. What should the values
of ∆x∞, z∞, and ∆u∞ be? [10%]

(iii) How should the cost function from part (a) be modified? [10%]

(iv) What are the advantages and disadvantages of using a plant model expressed
in terms of ∆u and ∆x to design a constrained predictive controller? [15%]
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2 Model predictive control usually employs the receding horizon principle.

(a) (i) Describe the receding horizon principle, in the context of predictive control. [20%]

(ii) What are the main advantages and disadvantages of receding horizon control
compared with infinite horizon control? [10%]

(b) Consider the following linear discrete-time system

x(k+1) = Ax(k)+Bu(k)

where x(k) is the state, and u(k) is the input. Let xi and ui be the predicted state and input
at time k+ i, i.e. x0 = x(k), and xi+1 = Axi +Bui, for i = 0,1, . . .. Define

x ,
[
xT

0 xT
1 xT

2 xT
3

]T
, u ,

[
uT

0 uT
1 uT

2

]T

(i) Find matrices Φ and Γ such that [20%]

x = Φx(k)+Γu

(ii) Suppose constraints are given in the form:[
C D

][xi
ui

]
≤ e, i = 0,1,2

T x3 ≤ t

Find matrices F and G and vector g such that these constraints can be written as [15%]

Fx+Gu≤ g.

(iii) Using the results of parts (i) and (ii) find matrices E and M and a vector h in
terms of Φ, Γ, F , G and g such that the constraints in (ii) can be expressed as [10%]

Eu≤ h+Mx(k).

(c) The final state xN in the prediction horizon of length N, may be constrained to be in
a subset of the state space that is admissible with respect to the constraint Cx+Du ≤ e,
and positively invariant under a given stabilising control law, u = Kx.

(i) What is meant by a positively invariant admissible set? [10%]

(ii) Briefly outline reasons for choosing such a terminal constraint in receding
horizon control. [15%]
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3 (a) For a discrete-time system satisfying the state equation

xk+1 = g(xk,uk)

with x0 given, it is desired to minimise the cost function

Jd(x0,u0,u1, . . . ,uh−1) =
h−1

∑
k=0

cd(xk,uk)+ Jh(xh).

(i) Explain the concept of dynamic programming, and discuss its power and
limitations. [20%]

(ii) Show that the corresponding dynamic programming equation for the “cost to
go” or “value function” is: [20%]

Vd(x,k) = min
uk

(cd(x,uk)+Vd(xk+1,k+1)) .

(b) A continuous-time system satisfies the state equation

ẋ(t) = f (x(t),u(t))

with x(0) given. It is desired to determine an input function u(·) that minimises the cost
function

J(x(·),u(·)) =
∫ T

0
c(x(τ),u(τ))dτ + JT (x(T ))

(i) Using the discrete-time dynamic programming equation from part (a) derive
the continuous-time dynamic programming equation (i.e. the Hamilton-Jacobi-
Bellman (HJB) Equation).
(Hint, let V (x, t) = minu(c(x,u)δ t +V (x+δx, t +δ t)) and let δ t→ 0) [40%]

(ii) Let
f (x,u) = 2x+u, c(x,u) = x2 +u2, JT (x) = 10x2.

The corresponding value function has the form p(t)x(t)2. Using the HJB equation,
derive the differential equation that p satisfies, and state the boundary condition. [20%]
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4 Consider the stable continuous-time plant

G(s) =C(sI−A)−1B

(a) Define the L2 norm of a signal u as

‖u‖2 =

√∫
∞

0
u(t)T u(t)dt.

Considering a system y = G(s)u, state how the H2 norm of the plant G(s), ‖G(s)‖2,
relates ‖u‖2 to y. Provide definitions of any further signal norms used in your answer and
explain their significance. [20%]

(b) The observability gramian is defined as

Wo(t1),
∫ t1

0
eAT τCTCeAτ dτ.

(i) Show that if A is stable, and Q = limt1→∞Wo(t1), then Q satisfies the
Lyapunov Equation: [25%]

AT Q+QA+CTC = 0.

(ii) Show that if A is stable, and Q = QT > 0 (note the strict inequality) then
(A,C) is observable. [20%]

(iii) Write down an expression for the impulse response matrix g(t) of the plant
G(s) as defined above. [5%]

(iv) Hence derive an expression for ‖G(s)‖2 in terms of Q. [30%]

END OF PAPER
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4F3 2014: Numerical answers

Question 1.

(a)(i) F =

[
A 0
CA I

]
, G =

[
B
CB

]
(ii) P ≥ 0, Q1 ≥ 0, Q2 ≥ 0, R ≥ 0. (R > 0 for uniqueness)

(iii) Local = global optimum. Efficient algorithms.

(b)(i)

[
(A− I) B
C 0

] [
x∞
u∞

]
=

[
0
r

]
or

[
I −A −B
C 0

] [
x∞
u∞

]
=

[
0
r

]
Existence: Full row rank

Uniqueness: Invertible

(ii) ∆x∞ = 0, ∆u∞ = 0, z∞ = r.

(iii) zi ← zi − r, zN ← zN − r.

(iv) –

Question 2.

(a)(i) –

(ii) –

(b)(i) Φ =


I
A
A2

A3

, Γ =


0
B
AB B
A2B AB B

 (ii) F =


C

C
C

T

, G =


D
0 D
0 0 D
0 0 0

, g =


e
e
e
t


(iii) (FΓ +G)u ≤ g − FΦx(k)

(c)(i)
T =

{
x : (C +DK)(A+BK)ix ≤ e, ∀i = 0, . . . ,∞

}
.

(ii) Recursive feasibility of RHC in closed loop

Question 3.

(a) –

(b)(i) –

(ii) −ṗ(t) = 1− p(t)2 + 4p(t), P (T ) = 10.

Question 4.

(a) ‖y‖∞ ≤ 1
2π‖G(s)‖2‖u‖2., where ‖y‖∞ = supt

√
y(t)T y(t)

(b)(i) –

(ii) –

(iii) g(t) = CeAtB

(iv) ‖G(s)‖2 =
√

2π
√

trace(BTQB)

E. N. Hartley (Principal Assessor)
12 May 2014.


