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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 4 May 2021 9 to 10.40

Module 4F3

AN OPTIMISATION BASED APPROACH TO CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4F3 data sheet (two pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.

Page 1 of 6



Version GV/2

1 The structure of a data network is represented by the graph in Fig. 1. Nodes represent
networking devices, typically routers. Edges represent bidirectional connections between
routers. Each edge number indicates the time needed for a packet to travel between routers.
We want to find the minimal-time routing path from any initial node to node 7.
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Fig. 1

(a) Discuss Bellman’s principle of optimality as it applies to the specific context of
minimal-time routing problems. [15%]

(b) Define the cost of a path as the sum of the transmission times along it. Using
dynamic programming, show how to find the minimal-time routing path to send packets
from each node to node 7. [25%]

(c) Suppose there is an uncertainty of ± 1 time units on each communication between
routers, i.e. in the delay associated with each edge. For the worst case scenario (largest
delay on each edge), will the minimal-time routing paths to node 7 change? Explain your
answer. [10%]

(d) Explain why an edge with negative time weight would make the optimisation problem
ill-conditioned. [10%]

(e) For each edge from node ! to node " , denote by #! " their communication time and
consider the indicator variable $! " ∈ {0, 1}.

(i) Define the mathematical optimisation problem for the minimal-time routing
problem from node 1 to node 7. [30%]

(ii) Assume now that each variable $! " is continuous and non-negative. What
kind of optimisation problem is that? (least-squares / linear programming / convex
optimisation). Explain your answer. [10%]
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2 A two-compartment system models drug diffusion between body organs. Using $1
and $2 to denote drug concentrations in the two compartments, the model is given by

"$1 = −(%12 + &)$1 + %21$2 + ' "$2 = %12$1 − (%21 + &)$2 +#1 ( = $2 +#2 ,

where %12 = 10, %21 = 20 are the flow rates between compartments, and & = 1 is the
drug’s degradation rate. The input ' models drug injection. The inputs #1 and #2
model disturbances affecting concentration in the second compartment and measurement
noise, respectively. The output ( represents the measured concentration in the second
compartment.

(a) Write the system in matrix form and compute the transfer function )#1→( (*) from
input #1 to output (. [20%]

(b) Define the norms ∥)#1→( ∥2 and ∥)#1→( ∥∞ and discuss their meaning in terms of
the performance of this system. [15%]

(c) Compute ∥)#1→( ∥2. Explain the steps of your computation. [25%]

(d) It is required to find the controller + (*), from ( to ', which solves the H2
optimal control problem from the disturbance # = [#1 #2 ]) to the performance output
, = [ $2 ' ]) . To this end:

(i) Formalise the H2 optimal control problem using the notion of generalised
plant - (*) and linear fractional transformations. [15%]

(ii) Write the state-space realisation of the generalised plant - that is needed to
solve the H2 optimal control problem. Define numerically each matrix you use. [10%]

(iii) Using

. =

[
0.0491 0.0542
0.0542 0.0753

]
and / =

[
0.1944 0.1072
0.1072 0.0747

]

as solutions to the CARE and FARE equations, respectively, derive the state matrices
of the optimal H2 controller "$% = 0%$% + 1% (, ' = 2%$% . [15%]
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3 It is desired to find an approximate solution to the problem of minimising

3 ($0) =
∞∑
%=0

$)% 4$% + '
)
% 5'%

for the system
$%+1 = 0$% + 1'%

for a given initial condition $0, subject to the constraint | |'% | |∞ ≤6 for all % (i.e., all
elements of the vector '% satisfy |'% (·) | ≤6).

(a) Explain in detail how predictive control, with a horizon length of 7 = 2, can be used
to find a controller which ensures that 3 ($0) is minimised for sufficiently small $0. Give
the precise form of any Riccati equations or any Quadratic Programs (QPs) that must be
solved (it is not necessary to solve them). QPs should be written in the standard form. [60%]

(b) Explain why you have chosen the QP you did in your answer to (a). What are its
advantages and disadvantages compared to other equivalent QPs? [10%]

(c) What would be the advantage of increasing the horizon length 7? [15%]

(d) Explain why, in practice, a horizon length of 7 = 2 is unlikely to be sufficient. [15%]
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4 (a) Define the state-action value function 4 (*, 8). When can it be more useful
than the value function 9 (*)? [10%]

(b) A gridworld is labelled with states $ ∈ {1, . . . , 9} as shown

1 → ← 2 15→ ← 3
↓ ↓
↑ ↖ ↑

4 117→ 5 6
↓ ↓
↑ ↑ ↑
7 → ← 8 → ← 9

For all states except 5, an action involves a move from a state to an adjacent state, or
staying in the same place, with all moves allowed except from 2 or 6 to 5. The only action
from state 5 is a return to the starting state 1. Each arrow in the figure represents a state
action pair.
The cost of visiting each state is given by the following array, where the position in this
array corresponds to the position in the gridworld:

1 5 5

4 100 5

4 4 0

(So, for example, the cost of visiting state 5 is 100, and that of visiting states 2, 3, 6 is 5.)

(i) Two of the arrows in the top figure have been labelled with the corresponding
values of 4 (*, 8) for that state and action. What is the value of 4 for the others? [30%]

(ii) What is the minimal episodic cost when starting at state 1, and what is the
optimal path. [20%]

(iii) If 4-learning with an :-greedy action selection method is used, with : = 0.1
and a discount factor ; = 0.9, estimate a lower bound on the average episodic cost
after a large number of trials. [20%]

(iv) Explain, briefly, the SARSA algorithm. Given the same discount factor and
:-greedy action selection method what path might you expect it to find? (You are
not required to do any calculations for this part.) [20%]

END OF PAPER
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Engineering Tripos Part IIB FOURTH YEAR

Module 4F3: Optimal and Predictive Control

Data Sheet (available in the exam)

1. (a) For the dynamical system satisfying, ẋ = f(x, u), x(0) = x0, and the cost function

J(x0, u(·)) =

Z T

0

c(x(t), u(t)) dt + JT (x(T ))

then under suitable assumptions the value function, V (x, t), satisfies the Hamilton-
Jacobi-Bellman PDE,

�
@V (x, t)

@t
= min

u2U

✓
c(x, u) +

@V (x, t)

@x
f(x, u)

◆
, V (x, T ) = JT (x).

(b) For f(x, u) = Ax + Bu, c(x, u) = x
T
Qx + u

T
Ru, and JT (x) = x

T
XTx, if X(t)

satisfies the Riccati ODE,

�Ẋ = Q+XA+ A
T
X �XBR

�1
B

T
X, X(T ) = XT ,

then Jopt = x
T
0X(0)x0 and uopt(t) = �R

�1
B

T
X(t)x(t).

2. For the discrete-time system satisfying xk+1 = Axk+Buk with x0 given and cost function,

J(x0, u0, u1, . . . , uh�1) =
h�1X

k=0

�
x
T
kQxk + u

T
kRuk

�
+ x

T
hXhxh,

if Xk satisfies the backward difference equation,

Xk�1 = Q+ A
T
XkA� A

T
XkB(R +B

T
XkB)�1

B
T
XkA,

then Jopt = x
T
0X0x0 and optimal control signal, uk = �(R+B

T
Xk+1B)�1

B
T
Xk+1Axk.
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3. For the system satisfying,

2

6666664

ẋ

z

y

3

7777775
=

2

6666664

A
⇥
B1 0

⇤
B2


C1

0

� 
0 0
0 0

� 
0
I

�

C2

⇥
0 I

⇤
0

3

7777775

2

6666664

x

w

u

3

7777775
where

8
>>>>>>>>>><

>>>>>>>>>>:

(A,B2) controllable

(A,C1) observable

(A,B1) controllable

(A,C2) observable

(a) The optimal H2 controller is given by,
"

ẋk

u

#
=

"
A� B2F �HC2 �H

F 0

#"
xk

y

#

where F = B
T
2 X , H = Y C

T
2 , and X and Y are stabilising solutions to

0 = XA+ A
T
X + C

T
1 C1 �XB2B

T
2 X (CARE)

and

0 = Y A
T + AY +B1B

T
1 � Y C

T
2 C2Y (FARE)

(b) The controller given by,

"
ẋk

u

#
=

"
Â� B2F �HC2 �H

F 0

#"
xk

y

#

where F = B
T
2 X , H = Y C

T
2 , Â = A + 1

�2B1B
T
1 X , and X and Y are stabilising

solutions to,

XA+ A
T
X + C

T
1 C1 �X(B2B

T
2 � �

�2
B1B

T
1 )X = 0

and

Y Â
T + ÂY +B1B

T
1 � Y

�
C

T
2 C2 � �

�2
F

T
F
�
Y = 0,

satisfieskTw!zk1  �.
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