4F3 2014: Numerical answers

Question 1.

(a)(i) $F=\left[\begin{array}{cc}A & 0 \\ C A & I\end{array}\right], G=\left[\begin{array}{c}B \\ C B\end{array}\right]$
(ii) $P \geq 0, Q_{1} \geq 0, Q_{2} \geq 0, R \geq 0$. ($R>0$ for uniqueness $)$
(iii) Local $=$ global optimum. Efficient algorithms.
(b)(i) $\left[\begin{array}{cc}(A-I) & B \\ C & 0\end{array}\right]\left[\begin{array}{l}x_{\infty} \\ u_{\infty}\end{array}\right]=\left[\begin{array}{l}0 \\ r\end{array}\right]$ or $\left[\begin{array}{cc}I-A & -B \\ C & 0\end{array}\right]\left[\begin{array}{l}x_{\infty} \\ u_{\infty}\end{array}\right]=\left[\begin{array}{l}0 \\ r\end{array}\right]$

Existence: Full row rank
Uniqueness: Invertible
(ii) $\Delta x_{\infty}=0, \Delta u_{\infty}=0, z_{\infty}=r$.
(iii) $z_{i} \leftarrow z_{i}-r, z_{N} \leftarrow z_{N}-r$.
(iv) -

Question 2.

(a)(i) -
(ii) -
(b)(i) $\Phi=\left[\begin{array}{c}I \\ A \\ A^{2} \\ A^{3}\end{array}\right], \Gamma=\left[\begin{array}{ccc}0 & & \\ B & & \\ A B & B & \\ A^{2} B & A B & B\end{array}\right]$ (ii) $F=\left[\begin{array}{llll}C & & & \\ & C & & \\ & & C & \\ & & & T\end{array}\right], G=\left[\begin{array}{ccc}D & & \\ 0 & D & \\ 0 & 0 & D \\ 0 & 0 & 0\end{array}\right], g=\left[\begin{array}{l}e \\ e \\ e \\ t\end{array}\right]$
(iii) $(F \Gamma+G) \underline{\mathbf{u}} \leq g-F \Phi x(k)$
(c)(i)

$$
\mathbb{T}=\left\{x:(C+D K)(A+B K)^{i} x \leq e, \quad \forall i=0, \ldots, \infty\right\}
$$

(ii) Recursive feasibility of RHC in closed loop

Question 3.

(a) -
(b)(i) -
(ii) $-\dot{p}(t)=1-p(t)^{2}+4 p(t), P(T)=10$.

Question 4.

(a) $\|y\|_{\infty} \leq \frac{1}{2 \pi}\|G(s)\|_{2}\|u\|_{2}$, where $\|y\|_{\infty}=\sup _{t} \sqrt{y(t)^{T} y(t)}$
(b)(i) -
(ii) -
(iii) $g(t)=C e^{A t} B$
(iv) $\|G(s)\|_{2}=\sqrt{2 \pi} \sqrt{\operatorname{trace}\left(B^{T} Q B\right)}$
E. N. Hartley (Principal Assessor)

12 May 2014.

