
Crib of 4F5 exam 2021

April 29, 2022

1. (a) If gcd(a, b) = 11, there exist numbers a′ and b′ such that a = 11a′ and b = 11b′,
hence a+ b = 11(a′+ b′) = 1099 but this is impossible since 1099 is not divisible by
11 hence there exist no such numbers a and b.

(b) Using the fundamental property and even/odd properties of greatest common di-
visors, gcd(230 + 1, 210 + 1) = gcd(230 − 210, 210 + 1) = gcd(220 − 1, 210 + 1) =
gcd(220 + 210, 210 + 1) = gcd(210 + 1, 210 + 1) = 210 + 1 = 1025.

(c) Ra((a− 1)2b) = Ra(Ra((a− 1)2)b) = Ra(Ra(a
2 − 2a+ 1)b) = Ra(1

b) = 1 and hence
R101(123, 000, 000, 123) = R101(1230 × 1004 + 123) = R101(1230) + R101(123) =
18 + 22 = 40.

(d) The residuals of 37 with respect to the pairwise co-prime moduli (m1,m2,m3) =
(3, 4, 5) are (r1, r2, r3) = (1, 1, 2). Hence the residuals of 37−1 are the inverses
of the residuals in Zmi , that is (r−1

1 , r−1
2 , r−1

3 ) = (1, 1, 3). To find the number
in Zm for m = 60 with the residuals (1, 1, 3), we first compute ui = m/mi, i.e.,
(u1, u2, u3) = (20, 15, 12), then compute numbers bi such that Rmi(biui) = 1 (no
need to do an extended gcd for such small numbers, you can work it out in your
head), (b1, b2, b3) = (2, 3, 3) and finally compute Rm(

∑
i r
−1
i biui) = R60(1×2×20+

1× 3× 15 + 3× 3× 12) = R60(192) = 22.

(e) i. X2 = 2, X3 = 2X,X4 = 1 so the multiplicative order of X is 4.

ii. The additive order of X is 3, as is the case for any non-zero element in GF(9).

iii. If X generates the group, it must have order 8 and hence since X8 = (X4)2 = 1,
X4 must have order 2. Note that this also implies that X4 = −1 = 2.

iv. Following from the previous question, if α generates GF(121), α must have
multiplicative order 120, α60 must have order 2, and hence α60 = −1 = 11−1 =
10.

(f) By Blahut’s theorem, the linear complexity of the sequences x and y is equal to
the Hamming weight of their Discrete Fourier Transforms (DFTs) X and Y. By
the linearity of the DFT, the DFT of x + y is X + Y. When you add two vectors
with Hamming weights wX and wY , you obtain a vector with Hamming weight
wZ ≤ wX + wY , with equality if and only if all the non-zero elements of X and
the non-zero elements of Y occur in distinct positions. Hence, we conclude that
L(z) ≤ L(x) + L(y).
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2. (a) The multiplicative group has order 30 and hence the possible lengths are divisors
of 30, excluding 1 and 2 for which Reed-Solomon codes cannot be defined as they
would either have rate 0 or not correct any errors, i.e., 3, 5, 6, 10, 15, 30.

(b) α2 = 4, α3 = 8, α4 = 16, α5 = 1, hence the length is N = 5.

(c)

F =


1 1 1 1 1
1 2 4 8 16
1 4 16 2 8
1 8 2 16 4
1 16 8 4 2


(d) The parity-check matrix verifies that the first two coefficients of the DFT of a

codeword are zero, hence it consists of the first two columns of the DFT matrix,
transposed, i.e.,

H =

[
1 1 1 1 1
1 2 4 8 16

]
(e) The encoder matrix consists of the last 3 rows of the inverse DFT matrix, i.e.,

G =

 25 14 19 28 7
25 7 28 19 14
25 19 7 14 28


(f) Examining the first two digits of R, we note that the DFT of the error sequence is

generated by the recurrence relation Ek+1 = Ek and hence the full error sequence
in the frequency domain is E = [23, 23, 23, 23, 23]. We subtract the error sequence
from the received word in the frequency domain to obtain R − E = [0, 0, 26, 28, 4]
and cut out the information digits U = [26, 28, 4].

(g) This can be worked out either by row manipulations on the encoder or on the
parity-check matrix. Since the parity-check matrix has only 2 rows, it’s far easier
and we opt to do find the systematic parity-check matrix.

H′ =

[
1 1 1 1 1
24 25 27 0 8

]
h2 − 8h1

H′′ =

[
1 1 1 1 1
3 7 15 0 1

]
4h2

Hsys =

[
29 25 17 1 0
3 7 15 0 1

]
h1 − h2

and we now use the relation G = [I,P],H = [−PT , I] to obtain the systematic
encoder matrix

Gsys =

 1 0 0 2 28
0 1 0 6 24
0 0 1 14 16


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(h) This can be worked out by solving a system of two linear equations with two un-
knowns or using a Reed-Solomon decoder for erasure channels, but we note here
that the non-erased received symbols match the last row of the encoder matrix in
Question (e), which is a codeword of the Reed-Solomon code, irrespective of which
encoder matrix was used. Since there can only be one codeword that matches the
received word in 3 positions, [25, 19, 7, 14, 28] was the transmitted codeword and
hence the information digits are [25, 19, 7].

3. (a) i. Only Alice can read Bob’s message, by computing RmA(ydA) = RmA(xeAdA) =
x. Nobody else can decrypt the message because only Alice knows the inverse
dA of eA and it can’t be computed without knowing Euler’s function φ(mA)
which requires a prime factorisation of mA. Anyone could have generated this
message. Hence Alice has no guarantee that the message originates from Bob.
This is an intended use of an RSA PKC, for example when implementing an
anonymous feedback system where anyone should be able to write their feed-
back, only the intended recipient is allowed to read the anonymous feedback,
but the intended recipient is not meant to have the ability to determine the
author of a message.

ii. Only Bob can decrypt and read Eve’s message by computing RmB (ydB ) =
RmB (xeBdB ) = x. Anyone could have generated this message and Bob should
not be fooled by the fact that the message claims to be from Alice. This is a
malicious misuse of an RSA PKC and not one that it’s intended for.

iii. Anyone can read the message (x, y) and there is no need for decryption since the
message x is transmitted in plaintext. However, only Alice could have generated
y, as anyone can verify by computing RmA(yeA) = RmA(xdAeA) = x and verify
that the result is x. Hence, this provides a certificate for the authenticity of
the message x and guarantees that Alice is its author. This is an intended use
of an RSA PKC. An example application is when the TA publishes its users’
public key pairs (m, e): these may be signed with the TA’s own secret key to
ensure that nobody can tamper with the public keys when they are transmitted
to users who requested them.

iv. Only Bob can decrypt and read the message x by computing RmB (ydB1 ) =
RmB (xeBdB ) = x, and he can verify that the message is from Alice by computing

RmA(yeA2 ) = RmA(ydAeA1 ) = y1 and verifying that it is equal to y1. This is an
intended use of an RSA PKC and provides both secrecy and authenticity. Its
practical uses are many, for example when transmitting orders for financial
transactions to your bank: nobody else should be able to intercept and read
your order, and the bank must be sure that the order is from you.
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(b) i. We write

Qn(yn) =
n∏
i=1

Q(yi) (1)

=
∏
a∈Y

Q(a)nP̂yn (a) (2)

= e
∑
a∈Y logQ(a)

nP̂yn (a)

(3)

= en
∑
a∈Y P̂yn (a) logQ(a) (4)

= e
n
∑
a∈Y P̂yn (a) logQ(a)

P̂yn (a)

P̂yn (a) (5)

= e
n
∑
a∈Y P̂yn (a) logPyn (a)+n

∑
a∈Y Pyn (a) log

Q(a)

P̂yn (a) (6)

= e−n
(
H(P̂yn )+D(P̂yn‖Q)

)
. (7)

ii. The likelihood ratio test checks whether

Pn0 (yn)

Pn1 (yn)
≶ ξ (8)

This is equivalent to

log
Pn0 (yn)

Pn1 (yn)
≶ log ξ. (9)

Now, using (a),

log
Pn0 (yn)

Pn1 (yn)
= log

e−n
(
H(P̂yn )+D(P̂yn‖P0)

)
e−n
(
H(P̂yn )+D(P̂yn‖P1)

) (10)

= nD(P̂yn‖P1)− nD(P̂yn‖P0). (11)

Dividing by n and letting γ = 1
n log ξ gives the result.

iii. The assumption implies that P0(0) = 1− p and that P1(0) = p.
The Stein exponent in this case is

D(P1‖P0) =
∑
y

P1(y) log
P1(y)

P0(y)
(12)

= p log
p

1− p︸ ︷︷ ︸
y=0

+ (1− p) log
1− p
p︸ ︷︷ ︸

y=1

(13)

= p log
p

(1− p)
− log p− h(p) (14)
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4. (a) The ensemble average error probability is given by

p̄e =
M∑
v=1

qv E

[
Pr

[ ⋃
v′ 6=v

{
qv′W

n(Y n|Xn(v′)) ≥ qvWn(Y n|Xn(v))
∣∣Xn(v), Y n

}]]
(15)

≤
M∑
v=1

qv E

[
min

{
1,
∑
v′ 6=v

Pr

[
qv′W

n(Y n|Xn(v′)) ≥ qvWn(Y n|Xn(v))
∣∣Xn(v), Y n

]}]
(16)

≤
M∑
v=1

qv E

[
min

{
1,
∑
v′ 6=v

Pr

[
qsv′W

n(Y n|Xn(v′))s ≥ qsvWn(Y n|Xn(v))s
∣∣Xn(v), Y n

]}]
(17)

≤
M∑
v=1

qv E

[
min

{
1,
∑
v′ 6=v

E
[
qsv′W

n(Y n|Xn(v′))s
∣∣Xn(v), Y n

]
qsvW

n(Y n|Xn(v))s

}]
(18)

≤
M∑
v=1

qv E

[(∑
v′ 6=v

E
[
qsv′W

n(Y n|Xn(v′))s
∣∣Xn(v), Y n

]
qsvW

n(Y n|Xn(v))s

)ρ]
(19)

=

M∑
v=1

q1−sρ
v E

[( M∑
v′=1

E
[
qsv′W

n(Y n|Xn(v′))s
∣∣Xn(v), Y n

]
Wn(Y n|Xn(v))s

)ρ]
(20)

where (15) follows from the definition of the MAP decoding error event, (16) fol-
lows from the union bound, (17) holds for any s > 0, (18) follows from Markov’s
inequality, (19) follows from min{1, x} ≤ xρ for 0 ≤ ρ ≤ 1 and (20) from bringing
qv outside.

Write the inner average as

E
[
qsv′W

n(Y n|Xn(v′))s
∣∣Xn(v) = xn(v), Y n = yn

]
= qsv′

∑
xn(v′)

Q(xn(v′)Wn(yn|xn(v′))s

(21)
since the random codewords are generated independently of the messages. Thus,

M∑
v′=1

E
[
qsv′W

n(Y n|Xn(v′))s
∣∣Xn(v) = xn(v), Y n = yn

]
Wn(Y n|Xn(v))s

=
M∑
v′=1

qsv′
∑
xn(v′)

Q(xn(v′))
Wn(yn|xn(v′))s

Wn(yn|xn(v))s
(22)

=
∑
x̄n

Q(x̄n)
Wn(yn|x̄n)s

Wn(yn|xn(v))s

M∑
v′=1

qsv′ (23)

where (22) follows since the codewords are generated independently from the mes-
sages, (23) follows since the sum over xn(v′) is the same for every v′, and we used
x̄n as dummy summation index.
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Summarising, from (20) and (23), and by spelling out the outer expectation in (20)
we have that

p̄e ≤
M∑
v=1

q1−sρ
v

∑
xn(v),yn

Q(xn(v))Wn(yn|xn(v))

(∑
x̄n

Q(x̄n)
Wn(yn|x̄n)s

Wn(yn|xn(v))s

M∑
v′=1

qsv′

)ρ
(24)

=

M∑
v=1

q1−sρ
v

( M∑
v′=1

qsv′

)ρ ∑
xn,yn

Q(xn)Wn(yn|xn)

(∑
x̄n

Q(x̄n)
Wn(yn|x̄n)s

Wn(yn|xn)s

)ρ
(25)

=

( M∑
v=1

q
1

1+ρ
v

)1+ρ ∑
xn,yn

Q(xn)Wn(yn|xn)

(∑
x̄n

Q(x̄n)
Wn(yn|x̄n)

1
1+ρ

Wn(yn|xn)
1

1+ρ

)ρ
(26)

=

( M∑
v=1

q
1

1+ρ
v

)1+ρ ∑
xn,yn

Q(xn)Wn(yn|xn)
1

1+ρ

(∑
x̄n

Q(x̄n)Wn(yn|x̄n)
1

1+ρ

)ρ
(27)

=

( M∑
v=1

q
1

1+ρ
v

)1+ρ∑
yn

(∑
xn

Q(xn)Wn(yn|xn)
1

1+ρ

)1+ρ

(28)

where (25) follows by noticing that the sum over xn(v) does not depend on v (since
it is an average over the generation of codeword xn(v), (26) follows from setting

s = 1
1+ρ , (27) brings the term Wn(yn|x̄n)

1
1+ρ outside the sum over x̄n, and (28)

froups the sums over xn, x̄n, as these are dummy indices.

(b) If the messages are sequences of length n from a DMS V , then,

M∑
v=1

q
1

1+ρ
v =

∑
vn

n∏
i=1

PV (vi)
1

1+ρ (29)

=

(∑
v

PV (v)
1

1+ρ

)n
(30)

= enEs(ρ) (31)

Similarly,∑
yn

(∑
xn

Q(xn)Wn(yn|xn)
1

1+ρ

)1+ρ

=

(∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ)n
(32)

= e−nE0(ρ) . (33)

Thus,
p̄e ≤ e−n(E0(ρ)−Es(ρ)) . (34)

(c) The error probability will tend to zero as n→∞ whenever

E0(ρ) > Es(ρ), for some ρ ∈ [0, 1]. (35)

We know from the lectures that E0(ρ) is concave, increasing in ρ and E0(0) = 0.
Similarly, Es(ρ) is convex, increasing in ρ and Es(0) = 0. Thus, the error exponent
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will be > 0 as long as there is a ρ for which E0(ρ) > Es(ρ). This is guaranteed to
happen whenever

dE0(ρ)

dρ

∣∣∣
ρ=0

>
dEs(ρ)

dρ

∣∣∣
ρ=0

. (36)

From the notes, we know that

dE0(ρ)

dρ

∣∣∣
ρ=0

= I(X;Y ) (37)

dEs(ρ)

dρ

∣∣∣
ρ=0

= H(V ). (38)

Thus, for every input distributionPX , if I(X;Y ) > H(V ), p̄e → 0 as n→∞, which
is equivalent to C > H(V ).

(d) i. In this case,
Es(ρ) = ρ log |V|. (39)

Since, for a fixed rate R, M = enR, we also have that M = |V|n = en log |V|.
Comparing both expressions, if we associate R = log |V|, we recover the channel
coding theorem.

ii. Similarly, if the channel is noiseless

W (y|x) =

{
1 y = x

0 otherwise.
(40)

In this case, choosing Q(x) = 1
|X | gives E0(ρ) = ρ log |X |. Again associating

log |X | = R gives the result.
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ENGINEERING TRIPOS PART 118 2021 

ASSESSOR'S REPORT 

MODULE 4F5: Advanced Information Theory and Coding 

The examination was taken by 58 current undergraduates, one undergraduate from 
the 2019/20 cohort, and 3 graduate students. The raw marks satisfied the distribution 
guidelines and hence did not require scaling. The numbers and averages below only 
refer to the 58 current undergraduates who took the examination. 

Q1 Mathematical Fundamentals 
58 attempts, Average mark 13.0/20, Maximum 18, Minimum 4. 

This question was generally done well. In (b) a combination of Euclid and Stein steps 
considerably reduced the difficulty but most students found the right result tediously 
using only Euclid or Stein. In (c), the majority applied the Chinese Remainder Theorem 
correctly, but a few students did not provide sufficient evidence to ascertain that they 
used the theorem and lost method points as a result. In (e)(iv), only a handful of 
students realised that for any finite field GF(q=p0) with p>2 and generator ex, u!q-1J'2 = -
1 = p-1.The format with many short questions is in its 4th session and has established
itself well. It is easy to mark, provides a good mixture of straightforward questions and 
slightly trickier questions, and helps verify that students have engaged because the 
math used in this module is different from that used in other engineering modules. 

Q2 Reed Solomon Coding 
58 attempts, Average mark 16.09/20, Maximum 20, Minimum 1. 

This is a predictable question testing students' ability to implement Reed Solomon 
decoding on a small field. Students generally did very well on the question. The mark 
distribution and average is almost identical to last time the exam was held in 2019. 
This is by no means an easy question, so it is very pleasing to see so many of our 
students being able to demonstrate such a detailed and in-depth understanding of 
Reed Solomon coding and decoding. While the high average on this question means 
that it is not as good at discriminating student ability as the other questions, the 
question provides an excellent validation of the progress achieved in teaching this 
course: when I started teaching Reed-Solomon codes in 2013/14, barely half of the 
students would have been able to solve this question accurately. 

Q3 Cryptography / Hypothesis testing 
58 attempts, Average mark 9.55/20, Maximum 19, Minimum 0. 

This was a mixed question with (a) covering Cryptography and (b) covering Hypothesis 
testing. The cryptography part asked students to think of various scenarios for the use 
of the RSA cryptosystem, explain whether they were intended use of the cryptosystem, 
and think of practical situations in which this scenario comes into play. Only a minority 
of students came up with good realistic examples for the use of each scenario. Those 
who did demonstrated an excellent conceptual understanding of practical 
cryptography. Students were less successful on the hypothesis testing part of the 
question, with approximately 10 students barely attempting it or not at all, accounting 
for the low average mark on this question. 

Q4 Error Exponents 
No attempts. Only one graduate student attempted this question and got 11/20. 

This reflects the feedback expressed by many students at the end of lectures that they 
experienced the second part of the course has being harder than the first part. The 
teaching for the second part will be re-calibrated next year in light of this feedback. 

Jessy Sayir (Principal Assessor) 




