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Theory and Coding 2022

Crib

Question 1

(a) The proof relies on the fact that R8(2
n) = 0 for n ≥ 3 and hence R8(2

n) can only be non-zero
for n = 0, 1, 2.

• If m = 2k is even, R8(3
m + 1) = R8(R8(3

2)k + 1) = R8(1
k + 1) = 2, but R8(2

n) = 2 implies
n = 1, in which case 3m = 2n − 1 = 1, i.e., m = 0.

• If m = 2k + 1 is odd, R8(3
m + 1) = R8(3 R8(3

2)k + 1) = 4 but R8(2
n) = 4 implies n = 2

and hence 3m = 2n − 1 = 3, i.e., m = 1.

[10%]

(b) 385 = 5×7×11 hence by the Chinese Remainder Theorem only numbers whose remainders with
respect to 5, 7 and 11 aren’t zero have multiplicative inverses. R7(28) = 0 so 28 is not invertible.
[10%]

(c)

X =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0


[10%]

(d) By Lagrange’s theorem, the order of any element in a group must divide the order of the group,
but the order of the multiplicative group of GF(32) is 31 which is a prime number hence the
order of 1 +X +X2 +X4 must be 31.

[10%]

(e) The code has dimension K = 2 and contains qK = 42 = 16 codewords. It is clearly MDS (any
subset of 2 columns is an invertible matrix) so it satisfies the Singleton Bound with equality
dmin = N −K + 1 = 3− 2 + 1 = 2.

[10%]

(f) (i) We compute Euler’s function ϕ(247) = (13−1)× (19−1) = 216 and find the multiplicative
inverse of our public exponent e = 97 in Z216 using Euclid’s extended algorithm

n1 n2 q r (a1, b1) (a2, b2)

216 97 2 22 (1, 0) (0, 1)
22 97 4 9 (1,−2) (0, 1)
22 9 2 4 (1,−2) (−4, 9)
4 9 2 1 (9,−20) (−4, 9)
4 1 (9,−20) (−22,49)
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to yield our secret exponent d = 49, or d = 110001 in binary. To decrypt, we need to
compute R247(175d). We prepare the ground by computing the powers of 175 in Z247

as (175, 1752, 1754, 1758, 17516, 17532) = (175, 244, 9, 81, 139, 55) and hence recover the en-
crypted message

X = R247(2449) = R247(175× 17516 × 17532) = R247(175× 139× 55) = 123

[40%]

(ii) We compute Rm(10e) where (m, e) is the public modulus and exponent of our possible
correspondents. For Juliet, we obtain R187(107) = 175 and for Romeo, R391(105) = 295 so
clearly the message is from Juliet.

[10%]

Generally well-answered question. It was a slightly new format where 1 1/2 question in previous
years have been compressed into one question with two halves. The first half on mathematics was
done fairly well. It was surprising to see a few students attempt to calculate the order of 1+X2 +X5

in GF(32) the “hard” way without noticing that the order of the field 31 is a prime number and hence,
by Lagrange’s theorem, the order of every element has to be 31 since it has to divide the order of the
field. This sort of question had been asked in the past so those who failed to notice probably did not
attempt enough past tripos questions when preparing for the exam. The second part of the question
on cryptography was done with a variable level of success as it did require quite a few calculations
which many stumbled. Mere calculation errors were barely penalised but many did not quite lay out
the correct operations and struggled to get points as a result.

Question 2

(a) The multiplicative group has order 28 and hence the possible lengths are divisors of 30, excluding
1 and 2 for which Reed-Solomon codes cannot be defined as they would either have rate 0 or not
correct any errors, i.e., 4,7,14,28

[10%]

(b) α2 = 28, α3 = 17, α4 = 1, hence the length is N = 4.

[10%]

(c)

F =


1 1 1 1
1 α α2 α3

1 α2 1 α2

1 α3 α2 α

 =


1 1 1 1
1 12 28 17
1 28 1 28
1 17 28 12


[10%]

(d) The parity-check matrix verifies that the first two coefficients of the DFT of a codeword are zero,
hence it consists of the first two columns of the DFT matrix, transposed, i.e.,

H =

[
1 1 1 1
1 12 28 17

]
[10%]

(e) We compute the DFT matrix, using the hint to compute 1/N = 1/4 = 22 in GF(29), as

F−1 =
1

N


1 1 1 1
1 α3 α2 α
1 α2 1 α2

1 α α2 α3

 =


22 22 22 22
22 26 7 3
22 7 22 7
22 3 7 26


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The encoder matrix consists of the last 2 rows of the inverse DFT matrix, i.e.,

G =

[
22 7 22 2
22 3 7 26

]
[10%]

(f) Examining the first two digits of R, we note that the DFT of the error sequence is generated by
the recurrence relation Ek+1 = 28×Ek and hence the full error sequence in the frequency domain
is E = [28, 1, 28, 1]. We substract the error sequence from the received word in the frequency
domain to obtain R−E = [0, 0, 1, 11] and cut out the information digits U = [1, 11].

[20%]

(g) The D transform (equivalent to the z transform with D = z−1) of the recurrence relation is
determined by the locations 0 and 1 of the erasures (or potential errors), i.e.,

C(D) = (1− α0D)(1− α1D) = (1−D)(1− 12D) = 1− 13D + 12D2

resulting in the recurrence relation

Ek − 13Ek−1 + 12Ek−2 = 0

or, equivalently,
Ek = 13Ek−1 − 12Ek−2.

[20%]

(h) We apply the recurrence relation to the error sequence starting with [E0, E1] = [R′0, R
′
1] = [26, 4]

to yield
E = [26, 4, 1, 23]

and subtract from R′ = [26, 4, 13, 15] to yield C = [0, 0, 12, 21] and hence recover the information
digits U = [12, 21].

[10%]

This was a popular question that was very similar in style to previous years’ question. The aim
of this question is to test whether students have understood the concepts of linear codes over Galois
fields and the encoder and decoder methods learned for Reed Solomon codes. Students’ performance
on this question has improved year on year as a result of improvements in the delivery of this material
during the year and in the lecture notes. This year decoding for erasure channels was included in the
question and the majority of students succeeded in doing this without fault.

Question 3

(a) Figure 1 illustrates the function Es. The function is convex, increasing and Es(0) = 0. From the
lectures we know that the ensemble average error probability over all randomly generated codes
is

p̄e ≤ e−n(ρR−Es(ρ))

for any parameter ρ ∈ [0, 1] that can be optimised. Therefore, the ensemble average error
probability vanishes exponentially with n as long as ρR > Es(ρ). This means that there exists at
least a code that meets this performance. Since Es(ρ) is convex, increasing and Es(0) = 0, the
smallest slope ρR that allows for a positive difference has to be such greater than E′s(0), where
E′s(ρ) is the first derivative of Es(ρ). Since E′s(0) = H(V ) we have that for R > H(V ) there
exists a code of rate R = 1

n logM whose error probability vanishes exponentially with n.

[20%]
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Figure 1: Function Es(ρ) for a BMS with PV (0) = 0.11. The entropy of the source is H(V ) = 0.5.
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Figure 2: E0(ρ, PX) function for a BSC with δ = 0.11 with an equiprobable input distribution. The
mutual information of the channel is I(X;Y ) = 0.5.
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(b) Figure 2 illustrates the function E0. The function is concave, increasing and E0(0, PX) = 0.

From the lectures we know that the ensemble average error probability over all randomly gener-
ated codes is

p̄e ≤ e−n(E0(ρ,PX)−ρR)

for any parameter ρ ∈ [0, 1] that can be optimised. Therefore, the ensemble average error
probability vanishes exponentially with n as long as ρR < E0(ρ, PX). This means that there
exists at least a code that meets this performance. Since E0(ρ, PX) is convex, increasing and
E0(0, PX) = 0, the largest slope ρR that allows for a positive difference has to be such smaller
than E′0(0, PX), where E′0(ρ, PX) is the first derivative of E0(ρ, PX). Since E′0(0, PX) = I(X;Y )
we have that for R < I(X;Y ) there exists a code of rate R = 1

n logM whose error probability
vanishes exponentially with n.

[20%]

(c) (i)

Source Source Enc.
vn

Channel Enc.
m

Channel

xnm

Channel Dec.

yn

Source Dec.
m̂

Destination
v̂n

Figure 3: Block diagram of a separate source-channel coding system.

[10%]

(ii) We write the error probability of this system as

pe = P[V̂ n 6= V n] (1)

= P[V̂ n 6= V n ∩ m̂ = m] + P[V̂ n 6= V n ∩ m̂ 6= m] (2)

= P[V̂ n 6= V n|m̂ = m] · P[m̂ = m] + P[V̂ n 6= V n|m̂ 6= m] · P[m̂ 6= m] (3)

≤ P[V̂ n 6= V n|m̂ = m] + P[m̂ 6= m] (4)

where we have upper bounded P[m̂ = m] and P[V̂ n 6= V n|m̂ 6= m] by one.

[20%]

(iii) From (4) we see that the first term corresponds to the probability of a source coding error,
while the second corresponds to the probability of a channel coding error. Therefore, we
bound each term by their corresponding error exponent, as done in the lectures.

p̄e ≤ e−n(ρsR−Es(ρs)) + e−n(E0(ρc,PX)−ρcR). (5)

[15%]

(iv) If R > H(V ) we know that the first term in (5) vanishes. Likewise, if R < I(X;Y ), the
second term in (5)vanishes. Thus any rate H(V ) < R < I(X;Y ) makes the error probability
vanish.

[15%]
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Generally well answered question. Parts (a) and (b) were almost straight from the notes and
answered correctly, although some candidates did not fully answer the question. Many candidates
answered correctly Part (c)(i). Part (c)(ii) was mixed. Given Part (c)(ii), Parts (c)(iii) and (c)(iv)
were answered generally well.

Question 4

(a) (i) Consider the random variable pe(Cn) and directly apply Markov’s inequality to its tail

P
[
pe(Cn)s ≥ as] ≤ E[pe(Cn)s]

as
(6)

where a > 0, s > 0. If we choose

as = γnE[pe(Cn)s]

we obtain the result.

[15%]

(ii) The derivation in question (i) implies that with probability smaller than 1
γn

we will have

pe(Cn) ≥ γ
1
s
n E[pe(Cn)s]

1
s . (7)

which is equivalent to saying that with probability higher than 1− 1
γn

pe(Cn) < γ
1
s
n E[pe(Cn)s]

1
s . (8)

[10%]

(iii) If the sequence γn is such that
lim
n→∞

γn =∞

with probability approaching one we have that

pe(Cn) < γ
1
s
n E[pe(Cn)s]

1
s . (9)

or equivalently

− 1

n
log pe(Cn) > − 1

n
log γ

1
s
n −

1

n
logE[pe(Cn)s]

1
s . (10)

Thus, we see that if

lim
n→∞

− 1

n
log γ

1
s
n = 0

we obtain the desired result. [15%]

(iv) For s = 1 we have that with high probability

− 1

n
log pe(Cn) > − 1

n
logE[pe(Cn)]. (11)

which means that with high probability the error exponent of a randomly generated code
Cn will be higher than the exponent of the ensemble average error probability. [10%]

(b) (i) The Stein exponent is the maximum exponent (over all tests) of the pairwise error proba-
bility in hypothesis testing where the observations are i.i.d. and one of the pairwise error
probabilities is bounded by a constant. Specifically, assuming that ε0(PY , T ) ≤ α, it is

lim
n→∞

− 1

n
log ε1(QY , T ) = D(P‖Q).

It provides an indication as to how difficult is to tell distributions P,Q apart from i.i.d.
observations. The more different P and Q are, the higher D(P‖Q) and the lower the error
probabillity. [15%]
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(ii) The Stein exponent is the relative entropy

D(P‖Q) =
∑
y

P (y) log
P (y)

Q(y)
(12)

=
∑
y

P (y) log
2−y

q · py−1
(13)

=
∑
y

P (y) log

p
q

(2p)y
(14)

= log
p

q

∑
y

P (y)− log(2p)
∑
y

P (y)y (15)

= log
p

q
− log(2p)

∑
y

y2−y (16)

= log
p

q
− 2 log(2p) (17)

= − log(4pq) (18)

where
∑

y y2−y = 2. [20%]

(iii) The Stein exponent is the relative entropy

D(P‖Q) =
∑
y

P (y) log
P (y)

Q(y)
(19)

=
∑
y

P (y) log
αe−y

1
A

(20)

=
∑
y

P (y) log(αA)−
∑
y

P (y) · y (21)

= logα+ logA− EP [Y ]. (22)

[15%]

Part (a)(i) was answered correctly by many candidates; a common mistake was not using Markov’s
inequality correctly. Most candidates answered Part (a)(ii) correctly. Part (a)(iii) proved difficult
although several candidates answered correctly. Part (a)(iv) was mixed. Part (b)(i) was generally
answered correctly, although some candidates did not answer it well despite being almost straight from
the notes. Parts (b)(ii) and b(iii) involved calculations and were generally answered well.
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