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Crib

Question 1

(a) If the second operand is divisible by 9, its digits must sum to a multiple of 9, hence i2 = 0 or 9. In
Problem 1.3.3, we showed that the “casting out nines” method is a simple consequence of the property
of remainders and implies that the sum modulo 9 of digits of the operands of a sum must be equal to
the sum modulo 9 of the digits of the result. The sum is 1 on the left and i2 + 2 on the right, hence
R9(i2 + 2) = 1 implying that i2 = 8. We can verify using a calculator that i1 = 9. [10%]

(b) R144(100n) = 12 implies that there exists a q such that 100n−144q = 12. Let us compute the greatest
common divisor of 100 and 144 using the extended Euclid algorithm

n1 n2 a b a′ b′

144 100 1 0 0 1
44 100 1 -1 0 1
44 12 1 -1 -2 3
8 12 7 -10 -2 3
8 4 7 -10 -9 13
0 4 25 -36 -9 13

implying that gcd(100, 144) = 4 = −9 × 144 + 13 × 100. We can multiply this equation by 3 to yield
12 = −27 × 144 + 39 × 100 which yields a solution n = 39, i.e., R144(100 × 39) = 12 as required.
Another solution could have been found by stopping the extended algorithm after the 3rd step when
we found that 12 = −2× 144 + 3× 100, giving the solution n = 3, i.e., R144(100× 3) = 12. [10%]

(c) We note that 143 = 11× 13 and hence use the Chinese Remainder Theorem to determine the residues
of 27 to be (5, 1) with respect to the moduli (11, 13). The inverse of 5 in multiplication mod 11 is easily
determined by inspection to be 9, and the inverse of 1 in multiplication mod 13 is obviously 1, so the
residues of the inverse of 27 are (9, 1). We can now either use the method described in the notes to
obtain a number from its residues, or proceed by inspection to find an n such that R11(13n+ 1) = 9,
which one readily finds to be n = 4, so the inverse of 27 is 53. [10%]

(d) The multiplicative group of GF(8) has order 7 which is a prime number. Hence, irrespective of
which irreducible polynomial of degree 3 is used to define the group (indeed, we are not given that
polynomial!) the order of all non-neutral elements including X is 7, the order of the group. Hence,
X5 ·X4 = XR7(5+4) = X2. [10%]
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(e) By row manipulation, we bring the generator matrix into systematic form

Gsys =
[
I2 P

]
=

[
1 0 4
0 1 2

]
and obtain the corresponding systematic parity-check matrix

Hsys =
[
−P T I1

]
=
[
1 3 1

]
[10%]

(f) (a) We precompute the exponential powers of 2

21 22 24 28 216

2 4 16 20 46

and obtain yA = 2xA = 227 = 216+8+2+1 = 46× 20× 4× 2 = 44. [15%]

(b) We precompute the exponential powers of yB

431 432 434 438 4316

43 20 46 51 5

and obtain the common secret yxAB = 4327 = 4316+8+2+1 = 5× 51× 20× 43 = 56. The binary key
is 56 in binary, i.e., 111000. [15%]

(c) The new method generates the public keys yA = 2x
′
A and yB = 2x

′
B and obtains a common secret

because
s = y

x′A
B = (2x

′
B )x

′
A = 2x

′
Ax

′
B = (2x

′
A)x

′
B = y

x′B
A

where s stands for the commen secret. However, note that we can express s in terms of xA and
xB to obtain

s = 2x
′
Ax

′
B = 22xA2xB = 22xA+xB

where the power of 2 in the exponent is taken in Z58 because the order of the multiplicative group of
Z59 is 58, whereas the sum in the “double-exponent” is in Zϕ(58) where ϕ(58) = (2−1)(29−1) = 28
is the Euler function of 58. This is because exponentation in Z58 is over the multiplicative sub-
group of invertible elements which has order ϕ(58) = 28. Hence, using double exponentiation
reduces the search space for a brute force attack from 58 to 28 since there are only 28 possible
values for the exponent of 2 that gives the common key, thereby weakening the method rather
than strengthening it as claimed by Eve. [20%]

Question 2

(a) A binary single parity check bit achieves this. The easiest way to implement this is for the data on the
last hard disk to be the bit-wise XOR of the other 4. If any single hard disk becomes unavailable, its
content can be recovered by taking the bit-wise XOR of the remaining 4. [10%]

(b) Only a Maximum Distance Separable (MDS) code can achieve this, such as a Reed-Solomon (RS) code.
Any RS code of block length 5 can be used. For example, one could use an RS code over GF(256)
which would have the advantage of operating directly on bytes. One would need to pick a primitive
5th root of unity rather than an element of the maximum order 255 to get a block length of 5. Since 5
divides 255, there is a good chance of there being an element of order 5. In such a setup, the 3 first hard
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disks could contain information and the remaining 2 hard disks would contain the byte-wise two parity
symbols of GF(256) obtained via a systematic encoder matrix from the corresponding information
bytes in the first 3 hard disks. Alternatively, one could use an RS code of length 5 over GF(16), and
operate on nibbles (half-bytes, 4 bits, as seen in the IA Microprocessor lab) instead of bytes. [10%]

(c) We compute powers of X modulo π(X) to obtain X0 = 1, X1 = X,X2, X3, X4 = 1+X+X2+X3, X5 =
X(1 +X +X2 +X4) = 1 and conclude that the order of X in the multiplicative group is 5. Hence the
code length is N = 5. [10%]

(d) A parity-check matrix of an RS code consists of the first 2 rows of the DFT matrix

H =

[
1 1 1 1 1
1 X X2 X3 1 +X +X2 +X3

]
[10%]

(e) We begin by transforming the parity-check matrix into systematic form

H =

[
1 1 1 1 1
1 X X2 X3 1 +X +X2 +X3

]
L1

→ L2 +X3L1

H ′ =

[
1 1 1 1 1

1 +X3 X +X3 X2 +X3 0 1 +X +X2

]
=

[
1 1 1 1 1
α8 α14 α10 0 α7

]
L1

→ α−7L2

H ′′ =

[
1 1 1 1 1
α α7 α3 0 1

]
=

[
1 1 1 1 1

1 +X 1 +X +X2 1 +X +X2 +X3 0 1

]
→ L1 + L2

L2

Hsys =

[
X X +X2 X +X2 +X3 1 0

1 +X 1 +X +X2 1 +X +X2 +X3 0 1

]
=

[
α12 α13 α4 1 0
α α7 α3 0 1

]
We now obtain the systematic encoder matrix from Hsys =

[
−P T I2

]
to

Gsys =
[
I3 P

]
=

1 0 0 α12 α
0 1 0 α13 α7

0 0 1 α4 α3


=

1 0 0 X 1 +X
0 1 0 X +X2 1 +X +X2

0 0 1 X +X2 +X3 1 +X +X2 +X3


[20%]

(f) The erasures are in position 1,2 in the codeword. We begin by replacing the erasures with zeros and
consider the received word

r = [1 +X +X3, 0, 0, X, 0]
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and compute its DFT

R = rF = [1 +X +X3, 0, 0, X, 0]


1 1 1 1 1
1 X X2 X3 X4

1 X2 X4 X X3

1 X3 X X4 X2

1 X4 X3 X2 X



= [α11, 0, 0, α12, 0]


1 1 1 1 1
1 α12 α9 α6 α3

1 α9 α3 α12 α6

1 α6 α12 α3 α9

1 α3 α6 α9 α12


= [α11 + α12, α11 + α3, α11 + α9, α11 + 1, α11 + α6]

= [1 +X3, X2, 1 +X +X2 +X3, X +X3, 1 +X]

= [α8, α9, α3, α14, α].

The first two symbols of the received vector in the frequency domain are non-zero, and since the
codeword is zero in these positions we now know the first two symbols of the error vector in the
frequency domain, [E0, E1] = [α8, α9]. The D transform of the recurrence relation is determined by
the locations 1 and 2 of the erasures (or potential errors if those code digits weren’t equal to zero), i.e.,

C(D) = (1− βD)(1− β2D) = 1 + (X +X2)D +X3D2 = 1 + α13D + α6D2,

resulting in the recurrence relation

Ek + α13Ek−1 + α6Ek−2 = 0,

or, equivalently,
Ek = α13Ek−1 + α6Ek−2.

We apply the recurrence relation to obtain
E2 = α13E1 + α6E0 = α7 + α14 = 1 +X2 +X3 = α5

E3 = α13E2 + α6E1 = α3 + α0 = X +X2 +X3 = α4

E4 = α13E3 + α6E2 = α2 + α11 = X +X2 +X3 = α4

We subtract (or, equivalently, add) the error vector from the received vector to obtain the codeword
in the frequency domain

C = [0, 0, X,X2, 1 +X2 +X3] = [0, 0, α12, α9, α5].

We now take the inverse DFT to obtain the codeword

c = CF−1 = [0, 0, α12, α9, α5]


1 1 1 1 1
1 α3 α6 α9 α12

1 α6 α12 α3 α9

1 α9 α3 α12 α6

1 α12 α9 α6 α3


= [α12 + α9 + α5, α3 + α6 + α2, α9 + α12 + α14, α0 + α6 + α11, α6 + α0 + α8]

= [1 +X +X3, X,X2 +X3X, 0]

and we finally read the 12 bit key from the systematic part of the codeword, k = [1101, 0100, 0011].

[40%]
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Question 3

(a) (i) By Markov’s inequality we have that

P
[
pe,m(Cn)s ≥ 2 · E[pe,m(Cn)s]

]
≤ 1

2
. (1)

[15%]

(ii) The quantity

E
[ M ′∑
m=1

Zm

]
.

is the expected number of codewords in Cn that satisfy the property pe,m(Cn) < 21/s·E[pe,m(Cn)s]1/s.

[10%]

(iii) We have that

E
[ M∑
m=1

Zm

]
= E

[ M∑
m=1

1
{
pe,m(Cn) < 21/s · E[pe,m(Cn)s]1/s

}]
(2)

=

M∑
m=1

E
[
1
{
pe,m(Cn) < 21/s · E[pe,m(Cn)s]1/s

}]
(3)

=

M∑
m=1

P
[
pe,m(Cn) < 21/s · E[pe,m(Cn)s]1/s

]
(4)

≥ M

2
(5)

where (5) follows from (1). [20%]

(b) (i) The rate of Cn is R = 1
n log2M while that of C′n is

R′ =
1

n
log2(2M − 1) ≥ R+

1

n
(6)

[10%]

(ii) If the expected number of codewords that satisfy the property pe,m′(C′n) < 21/s · E[pe,m′(C′n)s]1/s

is at least M ′

2 = M − 1
2 (from (5)) it means that this number should be at least M (since 1

2 is not
an integer). If the aforementioned expectation is at least M it means that there exists at least
a codebook C′n for which are at least M codewords satisfy the required property. Removing the
codewords for which the property is not satisfied yields the resulting code. [15%]

(iii) We have that with independent codewords generated with distribution QXn

pe,m′(C′n)s ≤
( ∑
m̄6=m′

∑
yn

√
Wn(yn|xn(m̄))Wn(yn|xn(m′))

)s
(7)

≤
∑
m̄ 6=m′

(∑
yn

√
Wn(yn|xn(m̄))Wn(yn|xn(m′))

)s
. (8)
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Then

E[pe,m′(C′n)s] =
∑
m̄6=m′

∑
xn1 ...x

n
M′

QXn(xn1 ) · · ·QXn(xnM ′)

(∑
yn

√
Wn(yn|xn(m̄))Wn(yn|xn(m′))

)s
(9)

=
∑
m̄6=m′

∑
xn
m′ ,x

n
m̄

QXn(xnm′)QXn(xnm̄)

(∑
yn

√
Wn(yn|xn(m̄))Wn(yn|xn(m′))

)s
(10)

= (M ′ − 1)
∑
xn,x̄n

QXn(xn)QXn(x̄n)

(∑
yn

√
Wn(yn|xn)Wn(yn|x̄n)

)s
(11)

where (10) follows since the term
∑

yn

√
Wn(yn|xn(m̄))Wn(yn|xn(m′)) only depends on m′ and

m̄. Eq. (11) follows since each term in the sum over m̄ 6= m′ is the same. [20%]

(iv) Putting together parts (b)(ii) and (iii) one gets the result. [10%]

Question 4

(a) (i) Figure 1 illustrates the function Es. The function is convex, increasing and Es(0) = 0. From the
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Figure 1: Function Es(ρ) for a BMS with PV (0) = 0.11. The entropy of the source is H(V ) = 0.5.

lectures we know that the ensemble average error probability over all randomly generated codes
is

p̄e ≤ e−n(ρR−Es(ρ)) (12)

for any parameter ρ ∈ [0, 1] that can be optimised. Therefore, the ensemble average error prob-
ability vanishes exponentially with n as long as ρR > Es(ρ). This means that there exists at
least a code that meets this performance. Since Es(ρ) is convex, increasing and Es(0) = 0, the
smallest slope ρR that allows for a positive difference has to be such greater than E′s(0), where
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E′s(ρ) is the first derivative of Es(ρ). Since E′s(0) = H(V ) we have that for R > H(V ) there
exists a code of rate R = 1

n logM whose error probability vanishes exponentially with n.

[15%]

(ii) Figure 2 shows an example of such a case. The two functions have the same derivative at zero
since H(V ) = H(Z) and then diverge.

[15%]
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Figure 2: Example of two functions Es(ρ) for memoryless sources with H(V ) = H(Z).

(iii) Since the two sources are defined over the same alphabet V, this is equivalent to encoding a single
discrete memoryless source X whose alphabet is X = V × V = V2 and probability distribution is
PX(x) = PV (v)PZ(z) when x = (v, z). Therefore,

EXs (ρ) = log

( ∑
(v,z)∈V2

(
PV (v)PZ(z)

) 1
1+ρ

)1+ρ

(13)

= log

(∑
v∈V

PV (v)
1

1+ρ

∑
z∈V

PZ(z)
1

1+ρ

)1+ρ

(14)

= EVs (ρ) + EZs (ρ). (15)

[20%]

(b) (i) This is a M -ary hypothesis testing problem where, upon processing observation y ∈ Y, the
test PV̂ |Y outputs which of the M known distributions PY |V=v, v = 1, . . . ,M generated the
observation. The joint distributions PV=v,Y = PV × PY |V=v, v = 1, . . . ,M induce known priors
PV (v), v = 1, . . . ,M . For a given test, the error probability can be written as

pe(V, PV̂ |Y ) = P[V̂ 6= V ] (16)

=
∑
v,y

PV,Y (v, y)
(

1− PV̂ |Y (v|y)
)
. (17)

[20%]
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(ii) We have that

P[(V, Y ) ∈ S(γ)] = P[(V, Y ) ∈ S(γ) ∩ error] + P[(V, Y ) ∈ S(γ) ∩ no error] (18)

≤ P[error] + P[(V, Y ) ∈ S(γ) ∩ no error] (19)

= P[error] +
∑

(v,y)∈S(γ)
no error

PV,Y (v, y) (20)

≤ P[error] +
∑

(v,y)∈S(γ)
no error

γPY (y) · 1 (21)

≤ P[error] + γ (22)

[30%]

8


