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Question 1

(a)

If the second operand is divisible by 9, its digits must sum to a multiple of 9, hence i3 = 0 or 9. In
Problem 1.3.3, we showed that the “casting out nines” method is a simple consequence of the property
of remainders and implies that the sum modulo 9 of digits of the operands of a sum must be equal to
the sum modulo 9 of the digits of the result. The sum is 1 on the left and i3 + 2 on the right, hence
Ry(iz + 2) = 1 implying that iy = 8. We can verify using a calculator that i; = 9. [10%]

R144(100n) = 12 implies that there exists a ¢ such that 100n — 144g = 12. Let us compute the greatest
common divisor of 100 and 144 using the extended Euclid algorithm

ni | no a b ||ad |V
144 | 100 1 0 0] 1
44 | 100 1 -1 011
44 12 1 -1 -2
8 12 7 1-10)-2| 3
8 4 7 1-101 -9 13
0 4 251-36 1| -9 |13

implying that ged(100,144) = 4 = —9 x 144 + 13 x 100. We can multiply this equation by 3 to yield
12 = —27 x 144 4 39 x 100 which yields a solution n = 39, i.e., R144(100 x 39) = 12 as required.
Another solution could have been found by stopping the extended algorithm after the 3rd step when
we found that 12 = —2 x 144 + 3 x 100, giving the solution n = 3, i.e., R144(100 x 3) = 12. [10%)]

We note that 143 = 11 x 13 and hence use the Chinese Remainder Theorem to determine the residues
of 27 to be (5,1) with respect to the moduli (11, 13). The inverse of 5 in multiplication mod 11 is easily
determined by inspection to be 9, and the inverse of 1 in multiplication mod 13 is obviously 1, so the
residues of the inverse of 27 are (9,1). We can now either use the method described in the notes to
obtain a number from its residues, or proceed by inspection to find an n such that Ry1(13n+1) =9,
which one readily finds to be n = 4, so the inverse of 27 is 53. [10%]

The multiplicative group of GF(8) has order 7 which is a prime number. Hence, irrespective of
which irreducible polynomial of degree 3 is used to define the group (indeed, we are not given that
polynomial!) the order of all non-neutral elements including X is 7, the order of the group. Hence,
X5. X4 = xR+ — X2, [10%)



(e) By row manipulation, we bring the generator matrix into systematic form

1 0 4
Guys = [I2 P]_[O 1 2]

and obtain the corresponding systematic parity-check matrix

Hy=[-P" I,]=[1 3 1]

[10%]
(f) (a) We precompute the exponential powers of 2
21 22 24 28 216
2 4 16 20 46
and obtain y4 = 274 = 227 = 216484241 — 46 » 20 x 4 x 2 = 44. [15%]

(b) We precompute the exponential powers of yp

431 432 43% 438 4316
43 20 46 51 5

and obtain the common secret y7;* = 43%7 = 4316+8+2+1 — 5 % 51 x 20 x 43 = 56. The binary key
is 56 in binary, i.e., 111000. [15%]

(¢c) The new method generates the public keys y4 = 274 and yg = 2°5 and obtains a common secret
because ) )

where s stands for the commen secret. However, note that we can express s in terms of x4 and

z g to obtain
5 = 9TaTp — 92TA2"B _ 927ATTB

where the power of 2 in the exponent is taken in Zsg because the order of the multiplicative group of
Zsg is 58, whereas the sum in the “double-exponent” is in Z,(55) where ¢(58) = (2—1)(29—1) = 28
is the Euler function of 58. This is because exponentation in Zsg is over the multiplicative sub-
group of invertible elements which has order ¢(58) = 28. Hence, using double exponentiation
reduces the search space for a brute force attack from 58 to 28 since there are only 28 possible
values for the exponent of 2 that gives the common key, thereby weakening the method rather
than strengthening it as claimed by Eve. [20%]

Question 2

(a) A binary single parity check bit achieves this. The easiest way to implement this is for the data on the
last hard disk to be the bit-wise XOR of the other 4. If any single hard disk becomes unavailable, its
content can be recovered by taking the bit-wise XOR, of the remaining 4. [10%]

(b) Only a Maximum Distance Separable (MDS) code can achieve this, such as a Reed-Solomon (RS) code.
Any RS code of block length 5 can be used. For example, one could use an RS code over GF(256)
which would have the advantage of operating directly on bytes. One would need to pick a primitive
5th root of unity rather than an element of the maximum order 255 to get a block length of 5. Since 5
divides 255, there is a good chance of there being an element of order 5. In such a setup, the 3 first hard



disks could contain information and the remaining 2 hard disks would contain the byte-wise two parity
symbols of GF(256) obtained via a systematic encoder matrix from the corresponding information
bytes in the first 3 hard disks. Alternatively, one could use an RS code of length 5 over GF(16), and
operate on nibbles (half-bytes, 4 bits, as seen in the IA Microprocessor lab) instead of bytes.  [10%]

(c) We compute powers of X modulo 7(X) to obtain X% = 1, X! = X, X2, X3 X* = 1+ X+ X2+ X3, X5 =
X(1+ X+ X2+ X%) =1 and conclude that the order of X in the multiplicative group is 5. Hence the
code length is N = 5. [10%]

(d) A parity-check matrix of an RS code consists of the first 2 rows of the DF'T matrix

H— 11 1 1 1
X X2 X 14X+ X2+XP
[10%]
(e) We begin by transforming the parity-check matrix into systematic form
H_ 1 1 1 1 1 Ly
Tl X X2 X 1+ X+XP+ X o L+ XL
go| 1 1 1 1 1
14+ X° X+X° X2+X% 0 1+X+X?
[1 1 1 1 1] Iy
a _a8 at % 0 o'l —a "L
1 1 1 11
" __
H = a o o 0 1]
. [ 1 1 1 1 1 — L1+ Lo
T4+ X 1+ X4+X? 1+4X+X2+X% 0 1] Ly
I [ X X + X2 X+ X%+ x3 10
T+ X 14X+ X% 1+ X4+X2+X 01
. (@2 a® a* 1 0
T la o o 01
We now obtain the systematic encoder matrix from Hys = [—PT I 2] to
1 00 a? a
Gys=1[Is P|=|0 1 0 o af
001 ot &
1 00 X 1+ X
=10 10 X+ X? 1+ X+ X2
001 X+X2+X3 1+X+X24+Xx3
20%)

(f) The erasures are in position 1,2 in the codeword. We begin by replacing the erasures with zeros and
consider the received word
r=[1+X+X30,0X,0]



and compute its DFT

1 1 1 1 1
1 X X2 x3 Xxt
R=rF=[1+X+X%00X,0 |1 X? X* X Xx?
1 X2 X X* x?
1 Xt X3 X? X
1 1 1 1 1
1 a2 & of o3
=[,0,0,0™%,0] [1 o o a2 of
1 o a2 &3 &
1 a3 a6 a9 0412

— [0411 +a12’a11 _{_a?,,all +a9>all + 1,0411 +a6]
=1+X X214+ X+ X2+ X3 X+ X314 X]
=[a®, 0’ a3, ol al.

The first two symbols of the received vector in the frequency domain are non-zero, and since the
codeword is zero in these positions we now know the first two symbols of the error vector in the
frequency domain, [Eo, E1] = [a®,a”]. The D transform of the recurrence relation is determined by
the locations 1 and 2 of the erasures (or potential errors if those code digits weren’t equal to zero), i.e.,

C(D)=(1-pD)1—- D) =1+ (X+X*)D+X*D?*=1+a"D +a’D?
resulting in the recurrence relation
Ep+aBE,_1 +o’E,_y = 0,
or, equivalently,
Ep=aBE,_1 +a%Ey_s.

We apply the recurrence relation to obtain

Ey =aBEi+aEy=a"+a*=1+X2+X3=0°

E; =aBE+a’Ei =3+ =X+ X?4+ X3 =0at

Ey =aBFE3+afEy=a’4+al'=X+X24+X3=0a4

We subtract (or, equivalently, add) the error vector from the received vector to obtain the codeword
in the frequency domain

C=100,0,X,X%1+X%+X3%=[0,0,0'2%a°a.
We now take the inverse DFT to obtain the codeword
1 1 1 1 1

1 o of o a2
c=CF1=[0,0,0'%a° 0" |1 af o2 o o
1 o o a2 af

1 o2 & o o

— 024+’ ad +ab+ata® + a2 +atta’ +ab +all al + ol +af
=[1+X+X3X, X2+ X3X,0]
and we finally read the 12 bit key from the systematic part of the codeword, k = [1101,0100,0011].
[40%]



Question 3

(a) (i) By Markov’s inequality we have that

P[ e,m(cn)s 2 2- E[ e,m(cn)s]] S

N =
—~
—
N—

[15%]
(ii) The quantity

E[mi:lZm}.

is the expected number of codewords in C,, that satisfy the property pe m (Cr) < 21/5-]E[ e (Cn)®] /s,

[10%)]
(iii) We have that
M M
E[ " Zn| =E[ > 1{pen(C0) < 2/ - Elpe.m(C)1/*}] (2)
m=1 m=1
M
= > E[1{pem(Ca) < 2/ Elpe,m (€)1 | (3)
m=1
M
= 3 Plpem(@n) <2V Elpem(Ca)] ] (4)
m=1
M
> = (5)
where (5) follows from (1). [20%]
(b) (i) The rate of C, is R = % log, M while that of CJ, is
R’—ll (2M—1)>RjLl (6)
n 082 - n
[10%)]

(ii) If the expected number of codewords that satisfy the property pe s (Ch) < 2% - E[pe s (Ch)*]Y*
is at least MTI = M — 1 (from (5)) it means that this number should be at least M (since % is not
an integer). If the aforementioned expectation is at least M it means that there exists at least
a codebook C/, for which are at least M codewords satisfy the required property. Removing the
codewords for which the property is not satisfied yields the resulting code. [15%]

(iii) We have that with independent codewords generated with distribution Qx»

pe,m«c;)ss(zzmn AT )Wy n|xn<m'>>)s )

m#Em’ y"

> (Zwvny [ ()W (y |27 (m )))8. (8)

m#m/ yn

IN



Then

Elpen (C)T= D> > Qxn(ah)- Qxn(zhy (Z VW (m)) W (y" o (m >>>
9)

=Y Y Qe )Qxe(a <Z¢Wnyxn ) (10

m#Em’ 7 lvxm

— 1) Y Que (e Qxn( (Zwvnyrxn Wl ) (1)

xn x’n

where (10) follows since the term } . VW (yrzn (m ))W”(y |z"(m')) only depends on m’ and
m. Eq. (11) follows since each term in the sum over m # m/' is the same. [20%]

(iv) Putting together parts (b)(ii) and (iii) one gets the result. [10%]
Question 4
(a) (i) Figure 1 illustrates the function Es. The function is convex, increasing and Es(0) = 0. From the
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Figure 1: Function E(p) for a BMS with Py/(0) = 0.11. The entropy of the source is H(V') = 0.5.

lectures we know that the ensemble average error probability over all randomly generated codes
is

Pe < e~ (PR—Es(p)) (12)

for any parameter p € [0, 1] that can be optimised. Therefore, the ensemble average error prob-
ability vanishes exponentially with n as long as pR > FE,(p). This means that there exists at
least a code that meets this performance. Since Es(p) is convex, increasing and E,(0) = 0, the
smallest slope pR that allows for a positive difference has to be such greater than E’(0), where



El(p) is the first derivative of Es(p). Since E.(0) = H(V) we have that for R > H(V) there
exists a code of rate R = %logM whose error probability vanishes exponentially with n.

[15%]

(ii) Figure 2 shows an example of such a case. The two functions have the same derivative at zero
since H(V') = H(Z) and then diverge.

[15%]
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Figure 2: Example of two functions Es(p) for memoryless sources with H(V) = H(Z).

(iii) Since the two sources are defined over the same alphabet V, this is equivalent to encoding a single
discrete memoryless source X whose alphabet is X = V x V = V? and probability distribution is
Px(z) = Py(v)Pz(z) when x = (v, z). Therefore,

o=t T (Priwr) ™) (13

(v,2)EV?
1 1\ M
S OICED WS (14)
veY z€V
= EJ(p) + EZ(p). (15)

20%]

(b) (i) This is a M-ary hypothesis testing problem where, upon processing observation y € ), the

test PV\Y outputs which of the M known distributions Pyy—_,,v = 1,..., M generated the
observation. The joint distributions Py—,y = Py X Pyjy—,,v = 1,..., M induce known priors
Py(v),v=1,..., M. For a given test, the error probability can be written as
pe(V, Pyy) =PIV # V] (16)
=3 Py ) (1= Py (vly)). (17)
U’y
[20%]



(ii) We have that

P(V,Y) € S()] =P[(V,Y) € S(v) Nnerror] + P[(V,Y) € S() Nno error] (18)
< Plerror] + P[(V,Y) € S(v) Nno error] (19)
= Plerror] + Z Pyy (v,y) (20)
ey
< Plerror] + Z vPy(y) -1 (21)
¥ el
< Plerror] + v (22)
[30%]



