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EGT3
ENGINEERING TRIPOS PART IIB

Thursday 4 May 2023 9.30 to 11.10

Module 4F5

ADVANCED INFORMATION THEORY & CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Page 1 of 6



Version AGiF/3

1 (a) Recover the missing digits 81 and 82 in the sum

8674534 + 19818342 = 106728276

given that the second operand is divisible by 9. [10%]

(b) Find an integer = such that '144(100=) = 12. [10%]

(c) What is the inverse of 27 in the ring 〈Z143, ⊕, �〉? [10%]

(d) What is -5 · -4 in GF(8)? [10%]

(e) Determine a parity-check matrix of the code over GF(5) defined by its generator
matrix

G =

[
1 1 1
1 2 3

]
.

[10%]

(f) In a toy example of the Diffie-Hellman public key distribution system, we operate
in 〈Z? , �〉 where ? = 59 is a prime for which ? − 1 = 2 · 29 has a “large” prime factor.
The generator is U = 2. Your secret key is G� = 27 and you wish to generate a common
secret key to communicate with Bob whose public key is H� = 43 which he derived from
his secret key G�.

(i) What is your public key H�? [15%]

(ii) Use the Diffie-Hellman protocol to generate a common key and convert it to a
six-digit binary key that can be used in a conventional secret key cryptosystem. [15%]

(iii) Eve suggests that, in order to improve the security of Diffie-Hellman, one
might want to double-exponentiate secret keys: instead of using G� as your secret
key in Diffie-Hellman, use G′

�
= 2G� and similarly Bob uses G′

�
= 2G� . Explain

why the resulting system still determines a common secret key but actually weakens
Diffie-Hellman instead of strengthening it. [20%]
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2 A coded Redundant Array of Independent Disks (RAID) consists of 5 hard disks of
1 tebibyte (1 TiB) each (240 bytes or 243 bits) each. The aim of a RAID is to ensure data
recovery in the event that some of the disks malfunction.

(a) Describe the simplest possible coding system that permits storage of 4 TiB on the
RAID so that all data can be recovered in the event that a single hard disk becomes
unavailable. [10%]

(b) Describe a coding system that permits storage of 3 TiB on the RAID so that all data
can be recovered in the event that up to two hard disks become unavailable. [10%]

(c) Consider a Reed-Solomon (RS) code over GF(16) defined via the irreducible (not
primitive) polynomial c(-) = 1 + - + -2 + -3 + -4 and the root of unity V = - . What is
the length of the code? [10%]

(d) The RS code is defined so that the first digits of a codeword’s Discrete Fourier
Transform (DFT) are zero. Determine the 3-dimensional code’s parity-check matrix. [10%]

(e) Using the logarithmic table of GF(16) below, determine the code’s systematic
encoder matrix. [20%]

(f) The RAID has a 12 bit control string that specifies the encryption standard applied
to the data. Hard disks 0, 1, and 2 store 4 bits of this control string each. Hard disks 3
and 4 store parity-check symbols obtained from the 12 bit string using the systematic RS
encoder matrix you determined in Part (e). The 4 bits stored on hard disk 0 are [1, 1, 0, 1],
corresponding to the element 1+- +-3 of GF(16). Hard disk 1 and 2 have malfunctioned
and any information stored on those hard disks has been erased. Hard disks 3 and 4 contain
the bits [0, 1, 0, 0] and [0, 0, 0, 0], respectively. Use RS decoding to recover the 12 bit
control string. [40%]

U0 1 U4 - + -2 + -3 U8 1 + -3 U12 -

U1 1 + - U5 1 + -2 + -3 U9 -2 U13 - + -2

U2 1 + -2 U6 -3 U10 -2 + -3 U14 - + -3

U3 1 + - + -2 + -3 U7 1 + - + -2 U11 1 + - + -3 U15 1
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3 (a) Consider a channel code C= of length = with " codewords constructed over
alphabetX . The codewords are generated at random. Let ?4,< (C=) be the error probability
of the <-th codeword of a given codebook C= for < = 1, . . . , " and E[?4,< (C=)] its
average over the random-coding ensemble.

(i) Show that for any B > 0 it holds that
P
[
?4,< (C=) ≥ 21/B · E[?4,< (C=)B]1/B

]
≤ 1

2
. [15%]

(ii) Define the random variable /< = 1
{
?4,< (C=) < 21/B ·E[?4,< (C=)B]1/B

}
and

explain the meaning of the quantity

E

[ "∑
<=1

/<

]
. [10%]

(iii) Show that

E

[ "∑
<=1

/<

]
≥ "

2
. [20%]

(b) Consider now a code C′= with "′ = 2" − 1 codewords of length = constructed
over alphabet X . The codewords are independently generated with distribution &-= . Let
?4,<′ (C′=) be the error probability of the <′-th codeword of a given codebook C′= for
<′ = 1, . . . , "′ and E[?4,<′ (C′=)] its average over the random-coding ensemble.

(i) Compare the rate of C′= with that of C= in Part (a). [10%]

(ii) Show that there exists a code C̃= with " codewords obtained by removing
codewords from C′= such that ?4,< (C̃=) < 21/B ·E[?4,<′ (C′=)B]1/B for< = 1, . . . , " .

[15%]

(iii) Using that
( ∑

8 08
) B ≤ ∑

8 0
B
8
for 0 ≤ B ≤ 1 and that for a given code

?4,<′ (C′=) ≤
∑
<̄≠<′

∑
H=

√
,= (H= |G= (<̄)),= (H= |G= (<′)),

where,= (H= |G=) is the =-use channel transition probability, show that

E[?4,<′ (C′=)B] ≤ ("′−1)
∑
G=

∑
Ḡ=

&-= (G=)&-= (Ḡ=)
(∑
H=

√
,= (H= |G=),= (H= |Ḡ=)

) B
.

[20%]

(iv) Finally, show that there exists a codewith" codewords such that for 0 ≤ B ≤ 1,

?4,< (C̃=) < (4("−1))
1
B

(∑
G=

∑
Ḡ=

&-= (G=)&-= (Ḡ=)
(∑
H=

√
,= (H= |G=),= (H= |Ḡ=)

) B) 1
B

.

[10%]
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4 (a) Let %+ be the probability distribution of a discrete memoryless source + over
alphabet V . For 0 ≤ d ≤ 1, consider the function

�+B (d) = log
( ∑
E∈V

%+ (E)
1

1+d
)1+d

(1)

(i) Sketch the function �+B (d). Explain the connection of the function �+B (d)
with the random-coding average probability of error ?̄4. Explain how it can be used
to show that there exist fixed-length source codes of rate ' = 1

= log2 " such that
for ' > � (+), their probability of error tends to zero as = → ∞, where " is the
number of indices that are used for compression. [15%]

(ii) Let %/ be the probability distribution of a discrete memoryless source / over
alphabet V . Assume that %/ (I) ≠ %+ (E) for some pairs (I, E) ∈ V × V and that
� (/) = � (+). Sketch the functions �+B (d), �/B (d) and compare them. [15%]

(iii) Consider the sources described Part (a)(ii). Show that, when compressing the
two sources in parallel, there exist codes of rate ' > 2� (+) such that the error
probability decays exponentially with exponent given by

max
0≤d≤1

d' −
(
�+B (d) + �/B (d)

)
.

[20%]

(b) Consider a Bayesian multiple hypothesis testing problem between distributions with
|V | hypotheses %. |+ (H |E) for E ∈ V , defined over the same alphabet Y .

(i) Define the hypothesis testing problem and the corresponding average error
probability Ȳ. [20%]

(ii) For W > 0, define the set

S (W) =
{
(E, H) ∈ V × Y :

%+. (E, H)
%. (H)

≤ W
}
.

Show that the error probability of a given test is such that

Ȳ ≥ P
[
%+. (+,. )
%. (. )

≤ W
]
− W.

[30%]

END OF PAPER
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