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Crib

1) (a) We use the fact that R33(100) = 1,

R33(458923αβ37257834) = R33

(
R33(34) +R33(78× 100) +R33(25× 1002) +R33(37× 1003)

+R33(αβ × 1004) +R33(23× 1005) +R33(89× 1006) +R33(45× 1007)
)

= R33 (1 + 12 + 25 + 4 + 23 + 23 + 12 +R33(αβ))

= R33 (R33(αβ) + 1) = 25

The only possible solution is α = 2 and β = 4, since other values for which R33(αβ) = 24 would
require α > 3.

(b) We operate the extended Euclidean algorithm to find numbers a and b satisfying the gcd theorem,

n1 n2 d (a1, b1) (a2, b2)

1357 4080 3 (1,0) (0,1)
1357 9 150 (1,0) (-3,1)

7 9 1 (451,-150) (-3,1)
7 2 3 (451,-150) (-454, 151)
1 2 (1813,-603)

which shows that 1813 × 1357 − 603 × 4080 = 1, hence R4080(1813 × 1357) = 1 and hence the
inverse of 1357 in Z4080 is 1813.

(c) 531 is divisible by 3 which is not invertible in Z15 and hence, since it residual is not invertible it
is not invertible in Z4080. Similarly, 532 is divisible by 2 and hence not invertible in Z16, 235 is
divisible by 5 and hence not invertible in Z15.

The only number that has an inverse is 253. Its residuals with respect to 15,16,17 gives its
CRT notation (13, 13, 15). We obtain the inverse residuals by inspection (7, 5, 8), verifying that
R15(7×13) = 1, R16(5×13) = 1 and R17(8×15) = 1. If we wanted, we could compute the inverse
of 253 in Z4080 to be 2677 and verify that its residuals are indeed 7, 5 and 8, but this was not
required in the question.

(d) The multiplicative group of GF(128) has order 127 which is a prime number. Since Lagrange’s
theorem shows that the order of every element must divide the order of the group and 127 has no
divisor other than 1 and itself, the multiplicative order of 1 +X2 is 127. As for the additive order,
1 +X2 + 1 +X2 = 0 so the order is 2, as is the case for every element of a binary extension field
because 1 + 1 = 0 in GF(2).

(e) Any element of any binary extension field GF(2e) except 0 has additive order 2 while its multi-
plicative order must divide the order 2e − 1 of the group which is an odd number and hence the
order can never be 2.
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For extension fields of other prime numbers GF(pe) on the other hand, the additive group has
order pe which is an odd number so there can never be an element of additive order 2, while
p−1 =′′ −1′′ always has multiplicative order 2, simply because Rp((p−1)2) = Rp(p

2−2p+1) = 1.

Hence: 4 has multiplicative order 2 in GF(5) but there is no element of additive order 2 as shown
above, 30 has multiplicative order 2 in GF(31) but there is no element of additive order 2, 1 has
additive order 2 in GF(128) but there is no element of multiplicative order 2, and finally 126 has
multiplicative order 2 in GF(12725) but there is no element of additive order 2.

(f) i. We first need to compute Bob’s secret key, the inverse of his public key 55 in Zϕ(323) =
Z(17−1)(19−1) = Z288. We run an extended Euclidean algorithm

n1 n2 d (a1, b1) (a2, b2)

288 55 5 (1,0) (0,1)
13 55 4 (1, -5) (0,1)
13 3 4 (1,-5) (-4,21)
1 (17,-89)

hence 17 × 288 − 89 × 55 = 1 and so 55−1 = 288 − 89 = 199 in Z288 so Bob’s secret key is
199, which is 1100111 in binary. We precompute the binary powers of the received encrypted
message y = 206 in Z323 to obtain y2 = 123, y4 = 271, y8 = 120, y16 = 188, y32 = 137, y64 = 35
and y128 = 256 and conclude from the binary expansion that the secret message is

x = R323(206× 123× 271× 35× 256) = 111

ii. For this question, we don’t actually need to decrypt the message. We Eve and Alice’s public
keys to their signatures to verify that they give the encrypted message:

• For Eve, we need to compute R319(28433). For this, we pre-compute the binary powers of
sE in Z319: s

1
E = 284, s2E = 268, s4E = 49, s8E = 168, s16E = 152 and s32E = 136 and compute

that s33E = s1E × s32E = 284× 136 = 25, which verifies Eve’s signature.

• For Alice, we pre-compute in Z299: s
1
A = 64.s2A = 209, s4A = 27, s8A = 131, s16A = 118 and

s32A = 170 and compute s35A = s1A × s2A × s32A = 64× 209× 170 = 25, whic hverifies Alice’s
signature.

iii. These signatures do not prove their friendship to Bob because one of them could just have
intercepted the other’s encrypted message and signed it. If they signed the secret message
instead of the encrypted message, that would prove that they both knew the original secret
text, but then anyone intercepting the signature could decrypt the message and the message
would no longer be secret.
A solution might be for Eve and Alice to apply their secret key to the signed encrypted
message of the other. Bob could then verify that Alice has signed Eve’s signature and Eve has
signed Alice’s signature, indicating that they clearly both agreed on the principle of sending a
secret message jointly. The only remaining danger is that one of them might have encrypted
a slightly modified message and had both of them sign it, and the other didn’t bother to
verify that the correct message has been encrypted (as she could do by encrypting their joint
message herself using Bob’s public key and verifying that it maps to the encrypted message
they are signing.)
Another approach which fixes this is that both of them first sign the original message using
their resepective secret keys, then encrypt the result using Bob’s public key. This way, Bob
would obtain two distinct encrypted signatures which he could decrypt using his secret key,
then recover the original text in two different ways by applying the public key of Eve and
Alice to their respective signatures, thereby proving, if the two messages are identical, that
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this is the message they had both agreed on and each signed independently. The message
remains secret because only Bob is able to recover the two signatures using his secret key.

2) (a) The possible code lengths are all the lengths that divide 41− 1 = 40, i.e., 2, 4, 5, 8, 10, 20 and 40.

(b)

F =


1 1 1 1 1
1 10 18 16 37
1 18 37 10 16
1 16 10 37 18
1 37 16 18 10


(c) The code rate is R = 3/5 = 0.6 and we obtain the parity-check matrix by taking the first two rows

of the DFT matrix,

H =

[
1 1 1 1 1
1 10 18 16 37

]
(d) We need to compute the inverse DFT matrix

F−1 =
1

5


1 1 1 1 1
1 37 16 18 10
1 16 10 37 18
1 18 37 10 16
1 10 18 16 37

 =


33 33 33 33 33
33 32 36 20 2
33 36 2 32 20
33 20 32 2 36
33 2 20 36 32


The encoder matrix consists of the last 3 rows of the inverse DFT matrix,

G =

33 36 2 32 20
33 20 32 2 36
33 2 20 36 32


(e) We take the DFT of the received word

[12, 0, 30, 5, 0]


1 1 1 1 1
1 10 18 16 37
1 18 37 10 16
1 16 10 37 18
1 37 16 18 10

 = [6, 17, 24, 5, 8]

Since the first two components of the result are non-zero, there was clearly a transmission error as
these would have been zero for a codeword. We now construct the recurrence relation Ek+1 = βEk
that maps 17 to 6, where β = 17 × 6−1 = R4117 × 7 = 37, which allows us to reconstruct the
complete error sequence in the frequency domain E = [6, 17, 14, 26, 19]. We obtain the transmitted
codeword as R−E = [0, 0, 10, 20, 30] and hence recover the information sequence [10, 20, 30].

(f) We note the positions 0 and 4 of the erasures and replace them (probably wrongly) by zeros, then
take the DFT as previously to yield

[0, 8, 16, 8, 0]


1 1 1 1 1
1 10 18 16 37
1 18 37 10 16
1 16 10 37 18
1 37 16 18 10

 = [32, 4, 37, 10, 40]
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The first two symbols are non-zero, indicating that the erasures must indeed have not been two
zeros. We now obtain the recurrence relation in the D domain from the position of the erasures
as

p(D) = (1− α0D)(1− α4D) = (1−D)(1− 37D) = 1− 38D − 4D2

and hence Ek = 38Ek−1 + 4Ek−2, giving the complete error vector E = [32, 4, 34, 37, 25]. We
recover the transmitted codeword in the frequency domain as R −E = [0, 0, 3, 14, 15] and hence
the information sequence [3, 14, 15].

(g) Since the parity-check matrix has only 2 rows, it is much easier to manipulate the parity-check
matrix to put it into systematic form to obtain the systematic encoder matrix, rather than ma-
nipulate the encoder matrix directly. We put the parity-check matrix in systematic form by row
manipulations [

1 1 1 1 1
1 10 18 16 37

]
→
[

1 1 1 1 1
26 35 2 0 21

]
→
[

1 1 1 1 1
11 29 4 0 1

]
and finally

Hsys =

[
31 13 38 1 0
11 29 4 0 1

]
and we obtain the systematic encoder matrix as by mapping Hsys = [−P T ; I] to Gsys = [I;P ]
as per the information data book

Gsys =

1 0 0 10 30
0 1 0 28 12
0 0 1 3 37


3) (a) i. The channel transition probability matrix is given by

W =


1− (K − 1)δ δ δ . . . δ

δ 1− (K − 1)δ δ . . . δ
...

. . .

δ δ . . . δ 1− (K − 1)δ


ii. The optimal decoder in terms of error probability is the maximum likelihood (ML) decoder

given by

m̂ = arg max
m=1,...,M

n∏
i=1

W (yi|xm,i)

iii. If δ < 1
K , then the diagonal term 1− (K − 1)δ > δ.

m̂ = arg max
m

n∏
i=1

W (yi|xm,i) (1)

= arg max
m

(1− (K − 1)δ)n−d(xm,y
n)δd(xm,y

n) (2)

= arg max
m

−d(xm, y
n) log

1− (K − 1)δ

δ
(3)

= arg min
m

d(xm, y
n) (4)

where d(xm, y
n) is the Hamming distance between yn and codeword xm, and the last step

follows since 1− (K − 1)δ > δ.

4



iv. The function E0(ρ) implicitly defines the error exponent of the error probability Er(R) =
maxρ∈[0,1]E0(ρ)−ρR. Since E′0(0) = I(X;Y ), the function E0(ρ) fundamentally characterizes
the limits of data transmission.

E0(ρ) = − log
∑
y

(∑
x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

(5)

= logKρ − log

(
(1− (K − 1)δ)

1
1+ρ (K − 1)δ

1
1+ρ

)1+ρ

(6)

v. The mutual information is found as E′0(0) = I(X;Y ) =
∑

x,y PX(x)W (y|x) log W (y|x)
PY (y) .

vi. For δ = 1
K the capacity is zero.

(b) i. If γ < 1
K , the decoder operates as before

m̂ = arg max
m

(1− (K − 1)γ)n−d(xm,y
n)γd(xm,y

n) (7)

= arg max
m

−d(xm, y
n) log

1− (K − 1)γ

γ
(8)

= arg min
m

d(xm, y
n) (9)

ii. Since the decoder operates exactly in the same way as the ML decoder, the corresponding
achievable rate will be the same, the mutual information I(X;Y ).

4) (a) i. In the Neyman-Pearson setting we do not know the priors for the hypotheses. Thus, we
design tests characterized by a distribution T (h|yn), h = 1, 2 according to the optimal-
ity criterion given by a tradeoff between the two pairwise error probabilities ε1(P1, T ) =∑

yn P
n
1 (yn)T (2|yn), ε2(P2, T ) =

∑
yn P

n
2 (yn)T (1|yn) expressed as

αβ(P1, P2) = min
T :ε2(P2,T )≤β

ε1(P1, T )

where the minimization is over all tests such that ε2(P2, T ) ≤ β.

ii. The optimal test is the likelihood ratio test expressed as a conditional probability distribution

T (1|yn) =


1

Pn1 (yn)
Pn2 (yn) > γ

p0
Pn1 (yn)
Pn2 (yn) = γ

0
Pn1 (yn)
Pn2 (yn) < γ

where γ, p0 are chosen so as to have T : ε2(P2, T ) = β.

iii. We have that

log
Pn1 (yn)

Pn2 (yn)
=

n∑
i=1

log
P1(yi)

P2(yi)
(10)

= n
n∑
i=1

∑
a∈Y

11{yi = a}
n

log
P1(a)

P2(a)
(11)

= n
∑
a∈Y

P̂yn(a) log
P1(a)

P2(a)
(12)

= nD(P̂yn‖P2)− nD(P̂yn‖P1) (13)
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The test estimates the empirical distribution of the observation and checking (by means of
relative entropy) whether it is closer to either of the testing distributions P1, P2. The test is
expressed as

T (1|yn) =


1 D(P̂yn‖P2)−D(P̂yn‖P1) >

1
n log γ

p0 D(P̂yn‖P2)−D(P̂yn‖P1) = 1
n log γ

0 D(P̂yn‖P2)−D(P̂yn‖P1) <
1
n log γ.

iv. We have that as n→∞

1

n
log

Pn1 (yn)

Pn2 (yn)
=

n∑
i=1

log
P1(yi)

P2(yi)
(14)

→ EQ
[

log
P1(yi)

P2(yi)

]
(15)

= D(Q‖P2)−D(Q‖P1) (16)

Thus, the test decides for hypothesis 1 whenever D(Q‖P2) > D(Q‖P1) (Q closer to P1) since
1
n log γ → 0.

(b) i. The error probability is given by
pe =

∑
vn /∈A

PV n(vn)

ii. Since the source sequences in A are the M that have the highest probability, if we move a
sequence from A to Ac (where Ac denotes the complement) and replace it by a sequence from
Ac, the error probability will be higher from the previous equation.

iii. Write for r > 0

prc =

( ∑
vn∈A

PV n(vn)

)r
(17)

=

(
M
∑
vn∈A

1

M
PV n(vn)

)r
(18)

≤M r
∑
vn∈A

1

M
PV n(vn)r (19)

where the last step follows from Jensen’s inequality and since |A| = M (the sum in (18) can
be understood as an expectation).

iv. If we set r = 1
1+ρ we get that, for −1 < ρ < 0

pc ≤M−ρ
( ∑
vn∈Vn

PV n(vn)
1

1+ρ

)1+ρ

.

v. Thus,

pe ≥ 1−M−ρ
( ∑
vn∈Vn

PV n(vn)
1

1+ρ

)1+ρ

(20)

= 1− e−n(ρR−Es(ρ)) (21)

where the last line follows since the source is memoryless and
(∑

vn∈Vn PV n(vn)
1

1+ρ

)1+ρ
=(∑

v∈V PV (v)
1

1+ρ

)n(1+ρ)
.
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