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EGT3
ENGINEERING TRIPOS PART IIB

Monday 12 May 2025 2 to 3.40

Module 4F5

ADVANCED INFORMATION THEORY AND CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) Below are the steps of a proof that 19 divides 3 + 226𝑘+2
for all integers 𝑘 , but

we have omitted the justification for each step. Explain why each step holds, and how they
link together to prove the statement. [25%]

(i) 𝑅9(26𝑘 ) = 1

(ii) 𝑅18(26𝑘+2) = 𝑅9(26𝑘+2) = 4

(iii) 𝑅19(218) = 1

(iv) 𝑅19(226𝑘+2) = 𝑅19(218𝑞+4) = 𝑅19(24) = 16

(b) We define arithmetic in GF(32) with irreducible polynomial 𝜋(𝑋) = 1 + 𝑋2 + 𝑋5. [25%]

(i) What is (1 + 𝑋 + 𝑋3) + (𝑋 + 𝑋2 + 𝑋3)?

(ii) What is (1 + 𝑋 + 𝑋3) (𝑋 + 𝑋2 + 𝑋3)?

(iii) What is the companion matrix of (𝑋 + 𝑋2 + 𝑋3)?

(iv) Is 𝜋(𝑋) a primitive polynomial?

(v) What is the multiplicative order of the element 1 + 𝑋?

(c) Having limited access to a large prime number generator for the RSA cryptosystem,
an apprentice cryptographer Bob implements RSA using only one large prime 𝑝 instead
of two primes 𝑝1 and 𝑝2. In RSA, a user’s public key is (𝑚, 𝑒) where 𝑚 = 𝑝1𝑝2. In Bob’s
implementation, 𝑚 = 𝑝2. Help Bob by answering the following questions:

(i) Bob knows that for standard RSA, a secret key 𝑑 is generated using the
Extended Euclid Algorithm such that 𝑅𝑤 (𝑑 × 𝑒) = 1 where 𝑤 = (𝑝1 − 1) (𝑝2 − 1).
By analogy, Bob tried to find a key 𝑑 such that 𝑅𝑤 (𝑑 × 𝑒) = 1 where 𝑤 = (𝑝 − 1)2

but this did not work: when he tried to encrypt a secret message 𝑥, he found that
𝑅
𝑝2 (𝑥𝑑𝑒) ≠ 𝑥. What should Bob change to make it work? [10%]

(ii) Assuming that you have fixed this issue so that 𝑅
𝑝2 (𝑥𝑑𝑒) = 𝑥 for most 𝑥,

explain what would happen if one tried to encrypt and decrypt a message 𝑥 = 𝑞𝑝 for
some number 𝑞, and comment on whether this is a significant weakness. [10%]

(iii) Play out a toy example of Bob’s cryptosystem using 𝑝 = 11 and 𝑒 = 3. What
is the public key? Compute 𝑑. Encrypt the message 𝑥 = 10 and decrypt the result. [20%]

(iv) Alice, a far more experienced cryptographer, hears of Bob’s creative meddling
with RSA and sends him an urgent telegram to warn him that his system is not secure,
assuming that it will be used in accordance with Kerckhoff’s principle, despite the
fact that it encrypts and decrypts correctly. Can you think why this is the case? [10%]
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2 (a) Reed-Solomon (RS) codes are MDS, i.e., they satisfy Singleton’s bound with
equality. Nevertheless, when used for error correction, there are certain sets of parameters
that result in a sub-optimal code whose rate can be increased without sacrificing error
correction performance. For example, explain how a Reed-Solomon code defined over
GF(256) with information length 𝐾 = 242 and code length 𝑁 = 255 can be improved in
such a way, and comment on whether the same argument applies when Reed Solomon
codes are used for erasure recovery. [15%]

(b) What are the possible code lengths for a Reed-Solomon code over GF(31)? [10%]

(c) Specify the Discrete Fourier Transform matrix over GF(31) with 𝑊𝑁 = 𝛼 = 4 and
determine the RS code length 𝑁 . [15%]

(d) An information sequence of length 3 is mapped onto a codeword by prepending the
information sequence with two zeros and multiplying the resulting vector by the inverse
DFT matrix. What is the rate of this code and what is its parity-check matrix? [10%]

(e) Elements of GF(31) are mapped to characters using the conversion table in Fig. 1.
The code is used to encode a 3 letter word. The codeword is transmitted with at most one
error and received as BFH=Z. Recover the encoded word. [20%]

(f) Another codeword is transmitted over an erasure channel and received as I=A##
where we used the symbol “#” to denote an erasure. Recover the encoded word. [30%]
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Character Element of GF(31)
= 0
A 1
B 2
C 3
D 4
E 5
F 6
G 7
H 8
I 9
J 10
K 11
L 12
M 13
N 14
O 15
P 16
Q 17
R 18
S 19
T 20
U 21
V 22
W 23
X 24
Y 25
Z 26
+ 27
- 28
* 29
/ 30

Fig. 1
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3 (a) Consider a source 𝑉𝑛 over alphabet V with distribution 𝑃𝑉𝑛 . Consider a
block source code that assigns to each of the 𝑀 most probable source sequences a unique
codeword (assume 𝑀 < |V |𝑛); the remaining |V |𝑛 − 𝑀 source messages are all assigned
the same codeword.

(i) Write an expression of the probability of error. [10%]

(ii) Explain why this is the code with minimum probability of error. [10%]

(iii) Hence, show that there exists a block source code for which

𝑝𝑒 ≤ P
[
1
𝑛

log
1

𝑃𝑉𝑛 (𝑉𝑛)
>

1
𝑛

log𝑀
]

[15%]

(iv) Show that for discrete memoryless sources, we can compress reliably for rates
𝑅 > 𝐻 (𝑉). [15%]

(b) Consider a hypothesis testing problem between two i.i.d. distributions 𝑃𝑛1, 𝑃
𝑛
2

defined over alphabet Y𝑛. Let 𝐻 denote the true hypothesis and 𝐻̂ the output of the
test and 𝜋𝑖 | 𝑗 = P[𝐻̂ = 𝑖 |𝐻 = 𝑗], with 𝑖, 𝑗 ∈ {1, 2}.

(i) State Stein’s lemma, explain the result and illustrate its significance. [20%]

(ii) Suppose we want to design a test such that 𝜋1|2 ≤ 0.001 and 𝜋2|1 ≤ 10−40.
What is the minimum required sample size 𝑛 that will guarantee the design
constraints? [20%]

(iii) What is the minimum required sample size 𝑛 if now 𝜋1|2 ≤ 0.00001 and
𝜋2|1 ≤ 10−40? [10%]
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4 Consider a discrete memoryless channel defined by 𝑊𝑛 (𝑦𝑛 |𝑥𝑛) =
∏𝑛
𝑖=1𝑊 (𝑦𝑖 |𝑥𝑖),

where𝑊 (𝑦 |𝑥) the probability of 𝑦 ∈ Y being the output when 𝑥 ∈ X is the input, withY ,X
being the output and input alphabets, respectively. Let the code beC = {𝑥𝑛 (1), . . . , 𝑥𝑛 (𝑀)}
where 𝑥𝑛 ( 𝑗) ∈ X 𝑛. Consider a random decoder that for a given channel output 𝑦𝑛 ∈ Y𝑛

outputs decoded message 𝑚̂ = 𝑗 with probability

P[𝑚̂ = 𝑗 |𝑌𝑛 = 𝑦𝑛] = 𝑊𝑛 (𝑦𝑛 |𝑥𝑛 ( 𝑗))∑𝑀
𝑚′=1𝑊

𝑛 (𝑦𝑛 |𝑥𝑛 (𝑚′))
(1)

for 𝑗 = 1, . . . , 𝑀 . The purpose of this question is to show that this suboptimal random
decoder also achieves capacity.

(a) Consider the transmission of message 𝑚 = 1. Show that the probability of correct
decoding averaged over the random coding ensemble of independent codewords with
probability 𝑄(𝑥𝑛) is

𝑝𝑐 = 1 − 𝑝𝑒 =
∑︁
𝑥𝑛,𝑦𝑛

𝑄(𝑥𝑛)𝑊𝑛 (𝑦𝑛 |𝑥𝑛)E
[

𝑊𝑛 (𝑦𝑛 |𝑥𝑛)
𝑊𝑛 (𝑦𝑛 |𝑥𝑛) +∑

𝑚′≠1𝑊𝑛 (𝑦𝑛 |𝑋𝑛 (𝑚′))

]
where the expectation is over random codewords 𝑋𝑛 (2), . . . , 𝑋𝑛 (𝑀). [10%]

(b) Show that

𝑝𝑐 ≥
∑︁
𝑥𝑛,𝑦𝑛

𝑄(𝑥𝑛)𝑊𝑛 (𝑦𝑛 |𝑥𝑛) 1

1 + E
[ ∑

𝑚′≠1
𝑊𝑛 (𝑦𝑛 |𝑋𝑛 (𝑚′))
𝑊𝑛 (𝑦𝑛 |𝑥𝑛)

]
(Hint: Jensen’s inequality states that for a convex function 𝑓 and random variable 𝑋 ,
E[ 𝑓 (𝑋)] ≥ 𝑓 (E[𝑋])). [15%]

(c) Show that

𝑝𝑐 ≥
∑︁
𝑥𝑛,𝑦𝑛

𝑄(𝑥𝑛)𝑊𝑛 (𝑦𝑛 |𝑥𝑛) 1

1 + (𝑀 − 1)E
[
𝑊𝑛 (𝑦𝑛 |𝑋𝑛)
𝑊𝑛 (𝑦𝑛 |𝑥𝑛)

]
[15%]

(d) Using that 1 − 1
1+𝑧 ≤ min{1, 𝑧} show that

𝑝𝑒 ≤
∑︁
𝑥𝑛,𝑦𝑛

𝑄(𝑥𝑛)𝑊𝑛 (𝑦𝑛 |𝑥𝑛) min
{
1, (𝑀 − 1)E[𝑊

𝑛 (𝑦𝑛 |𝑋𝑛)]
𝑊𝑛 (𝑦𝑛 |𝑥𝑛)

}
[15%]
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(e) Hence show that for 𝑄(𝑥𝑛) = ∏𝑛
𝑖=1𝑄(𝑥𝑖),

𝑝𝑒 ≤ 𝑒−𝑛(𝐸̄0 (𝜌)−𝜌𝑅)

using that min{1, 𝑥} ≤ 𝑥𝜌, 𝜌 ∈ [0, 1] where

𝐸̄0(𝜌) = − log
∑︁
𝑥,𝑦

𝑄(𝑥)𝑊 (𝑦 |𝑥)
(∑

𝑥 𝑄(𝑥)𝑊 (𝑦 |𝑥)
𝑊 (𝑦 |𝑥)

)𝜌
[25%]

(f) Assuming 𝐸̄0(𝜌) is a concave function of 𝜌, show that the decoder described by
Eq. (1) achieves the channel capacity 𝐶 = max𝑄 𝐼 (𝑋;𝑌 ). Justify your answer. [20%]

END OF PAPER
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