Module 4F7, Statistical Signal Analysis, Easter 2022

S.S.Singh

January 31, 2022

Question 1

Part a

$$
\Sigma_{x}=\mathbf{E}\left(X X^{T}\right)=\left[\begin{array}{ccc}
\mathbf{E}\left(X_{1}^{2}\right) & \mathbf{E}\left(X_{1} X_{2}\right) & \mathbf{E}\left(X_{1} X_{3}\right) \\
\mathbf{E}\left(X_{2} X_{1}\right) & \mathbf{E}\left(X_{2}^{2}\right) & \mathbf{E}\left(X_{2} X_{3}\right) \\
\mathbf{E}\left(X_{3} X_{1}\right) & \mathbf{E}\left(X_{3} X_{2}\right) & \mathbf{E}\left(X_{3}^{2}\right)
\end{array}\right]
$$

so we need lag 0 , lag 1 and lag 2 terms of the autocorrelation, which are $r_{0}=\sigma^{2}\left(1-\alpha^{2}\right), r_{1}=\alpha r_{0}$ and $r_{3}=\alpha r_{2}$ respectively.

$$
Y Y^{T}=X X^{T}+V V^{T}+X V^{T}+V X^{T}
$$

and thus $\Sigma_{y}=\Sigma_{x}+I$ as cross terms have zero expectation. Similarly,

$$
Y X^{T}=X X^{T}+V X^{T}
$$

and $\Sigma_{y x}=\Sigma_{x}$.
[Total marks: 30\%]

Part b-(i)

To find b_{i} set $\mathbf{E}\left(\hat{X}_{i}\right)=\mathbf{E}\left(X_{i}\right)$ or $b_{i}+B_{i} \mathbf{E}(Y)=\mathbf{E}\left(X_{i}\right)$. Firstly, $\mathbf{E}\left(X_{i}\right)=\alpha \mathbf{E}\left(X_{i-1}\right)=0$. Secondly, $\mathbf{E}(Y)$ is the zero vector. This gives $b_{i}=0$.

To find B_{i} differentiate as follows:

$$
\begin{aligned}
e_{i}^{2} & =X_{i}^{2}+\left(\hat{X}_{i}\right)^{2}-2 X_{i} \hat{X}_{i} \\
e_{i}^{2} & =X_{i}^{2}+\left(B_{i} Y\right)^{2}-2 B_{i} Y X_{i} \\
\nabla e_{i}^{2} & =2\left(B_{i} Y\right) Y-2 Y X_{i} \\
& =2 Y\left(Y^{T} B_{i}^{T}\right)-2 Y X_{i} \\
\mathbf{E}\left(\nabla e_{i}^{2}\right) & =2 \Sigma_{y} B_{i}^{T}-2\left(\Sigma_{y x_{i}}\right)
\end{aligned}
$$

setting to zero gives $B_{i}^{T}=\Sigma_{y}^{-1} \Sigma_{y x_{i}}$ or $B_{i}=\Sigma_{y x_{i}}^{T} \Sigma_{y}^{-1}$ or

$$
\hat{X}=\Sigma_{y x}^{T} \Sigma_{y}^{-1} Y
$$

[Total marks: 30\%]

Part b-(ii)

From the previous part

$$
\begin{aligned}
(X-\hat{X})(X-\hat{X})^{T} & =X X^{T}+\hat{X} \hat{X}^{T}-\hat{X} X^{T}-X \hat{X}^{T} \\
\hat{X} X^{T} & =\Sigma_{y x}^{T} \Sigma_{y}^{-1} Y X^{T} \\
X \hat{X}^{T} & =X Y^{T} \Sigma_{y}^{-1} \Sigma_{y x} \\
\hat{X} \hat{X}^{T} & =\Sigma_{y x}^{T} \Sigma_{y}^{-1} Y Y^{T} \Sigma_{y}^{-1} \Sigma_{y x}
\end{aligned}
$$

Taking the expected value gives

$$
\begin{aligned}
& \mathbf{E}\left(\hat{X} X^{T}\right)=\Sigma_{y x}^{T} \Sigma_{y}^{-1} \Sigma_{y x} \\
& \mathbf{E}\left(X \hat{X}^{T}\right)=\Sigma_{y x}^{T} \Sigma_{y}^{-1} \Sigma_{y x} \\
& \mathbf{E}\left(\hat{X} \hat{X}^{T}\right)=\Sigma_{y x}^{T} \Sigma_{y}^{-1} \Sigma_{y x}
\end{aligned}
$$

Adding all terms gives

$$
\mathbf{E}\left[(X-\hat{X})(X-\hat{X})^{T}\right]=\Sigma_{x}-\Sigma_{y x}^{T} \Sigma_{y}^{-1} \Sigma_{y x}
$$

[Total marks: 40\%]
End of Question 1.

Question 2

Part a

$$
p_{\theta}\left(x_{1}, y_{1}, \ldots, x_{T}, y_{T}\right)=p_{\theta}\left(x_{1}\right) p\left(y_{1} \mid x_{1}\right) \cdots p_{\theta}\left(x_{T}\right) p\left(y_{T} \mid x_{T}\right)
$$

where

$$
\begin{aligned}
p_{\theta}\left(x_{i}\right) & =\frac{1}{\sqrt{2 \pi} \theta} \exp \left(-\frac{x_{i}^{2}}{2 \theta^{2}}\right) \\
p\left(y_{i} \mid x_{i}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y_{i}-x_{i}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

[Total marks: 20\%]

Part b

We can solve for

$$
\begin{aligned}
p_{\theta}\left(x_{t}, y_{t}\right) & =\frac{1}{2 \pi \theta \sigma} \exp \left(-\frac{x_{t}^{2}}{2 \theta^{2}}-\frac{\left(y_{t}-x_{t}\right)^{2}}{2 \sigma^{2}}\right) \\
& =D \exp \left(x_{t}^{2}\left(-\frac{1}{2 \theta^{2}}-\frac{1}{2 \sigma^{2}}\right)+\frac{x_{t} y_{t}}{\sigma^{2}}\right) \\
p_{\theta}\left(x_{t} \mid y_{t}\right) & =C \exp \left(-\frac{x_{t}^{2}}{2}\left(\frac{1}{\theta^{2}}+\frac{1}{\sigma^{2}}\right)+\frac{x_{t} y_{t}}{\sigma^{2}}\right)
\end{aligned}
$$

where constant D contains non- x_{t} terms and constant C is the normalising constant so that $p_{\theta}\left(x_{t} \mid y_{t}\right)$ integrates to 1 . Find answer to be a Gaussian with variance

$$
\left(\frac{1}{\theta^{2}}+\frac{1}{\sigma^{2}}\right)^{-1}
$$

and mean

$$
\frac{y_{t}}{\sigma^{2}}\left(\frac{1}{\theta^{2}}+\frac{1}{\sigma^{2}}\right)^{-1}=y_{t} \frac{\theta^{2}}{\theta^{2}+\sigma^{2}}
$$

[Total marks: 20\%]

Part c

$$
\log p_{\tilde{\theta}}\left(x_{1}\right) \cdots p_{\tilde{\theta}}\left(x_{T}\right)=-\frac{T}{2} \log (2 \pi)-T \log (\tilde{\theta})-\sum_{i=1}^{T} \frac{x_{i}^{2}}{2 \tilde{\theta}^{2}}
$$

Taking the expectation gives

$$
\begin{aligned}
\int x_{t}^{2} p_{\hat{\theta}}\left(x_{t} \mid y_{t}\right) d x_{t} & =\text { mean }^{2}+\text { variance } \\
& =y_{t}^{2}\left(\frac{\hat{\theta}^{2}}{\hat{\theta}^{2}+\sigma^{2}}\right)^{2}+\left(\frac{1}{\hat{\theta}^{2}}+\frac{1}{\sigma^{2}}\right)^{-1} \\
& =s_{t}^{2} \\
Q(\hat{\theta}, \tilde{\theta})=-\frac{T}{2} & \log (2 \pi)-\frac{T}{2} \log \left(\tilde{\theta}^{2}\right)-\sum_{t=1}^{T} \frac{s_{t}^{2}}{2 \tilde{\theta}^{2}}
\end{aligned}
$$

[Total marks: 20\%]

Part d

Differentiating with respect to $\tilde{\theta}^{2}$ and set to 0 to get

$$
\begin{aligned}
-\frac{T}{2 \tilde{\theta}^{2}}+\sum_{t=1}^{T} \frac{s_{t}^{2}}{2 \tilde{\theta}^{4}} & =0 \\
\tilde{\theta}^{2} & =\frac{1}{T} \sum_{t=1}^{T} s_{t}^{2}
\end{aligned}
$$

When $\sigma=0, s_{t}^{2}=y_{t}^{2}+0=y_{t}^{2}$.
[Total marks: 20\%]

Part e

By differentiating with respect to $\tilde{\theta}^{2}=\frac{1}{T} \sum_{t=1}^{T} x_{t}^{2}$ which does coincide the answer in part-(d) when $\sigma=0$ since, for a noiseless observation, it must be that $y_{t}=x_{t}$.
[Total marks: 20\%]
End of Question 2.

Question 3

Part a

When $p\left(y_{n} \mid x_{n}=i\right)=\frac{1}{\sqrt{2 \pi} \theta_{i}} \exp \left(-\frac{1}{2 \theta_{i}^{2}} y_{n}^{2}\right)$.
[Total marks: 5\%]

Part b

If $S_{n}>S_{n-1}$ then $Y_{n}>0$ and if $S_{n}<S_{n-1}$ then $Y_{n}<0$. Thus Y_{n} can take positive and negative values as it is assumed by the model $p\left(y_{n} \mid x_{n}\right)$. In this case the instantaneous value X_{n} of the Markov sequence X_{1}, X_{2}, \ldots determines the variance of Y_{n} and the variance of the observation sequence assumes one of two values only, θ_{1}^{2} or θ_{2}^{2}. Although this may be a simplification, it is still consistent with the data since $p\left(Y_{1}, \ldots, Y_{n}\right)>0$ for all possible values of Y_{1}, \ldots, Y_{n}.
[Total marks: 5\%]

Part c

$$
\begin{aligned}
p_{n+1}= & \operatorname{Pr}\left(X_{n+1}=1 \mid y_{1: n}\right) \\
= & \operatorname{Pr}\left(X_{n+1}=1, X_{n}=1 \mid y_{1: n}\right)+\operatorname{Pr}\left(X_{n+1}=1, X_{n}=2 \mid y_{1: n}\right) \\
= & \operatorname{Pr}\left(X_{n+1}=1 \mid X_{n}=1, y_{1: n}\right) \operatorname{Pr}\left(X_{n}=1 \mid y_{1: n}\right) \\
& \quad+\operatorname{Pr}\left(X_{n+1}=1 \mid X_{n}=2, y_{1: n}\right) \operatorname{Pr}\left(X_{n}=2 \mid y_{1: n}\right) \\
= & (1-q) \operatorname{Pr}\left(X_{n}=1 \mid y_{1: n}\right) \\
& \quad+q\left(1-\operatorname{Pr}\left(X_{n}=1 \mid y_{1: n}\right)\right)
\end{aligned}
$$

Thus $\operatorname{Pr}\left(X_{n}=1 \mid y_{1: n}\right)$ is needed which is

$$
\frac{p_{n} \frac{1}{\sqrt{2 \pi} \theta_{1}} \exp \left(-\frac{1}{2 \theta_{1}^{2}} y_{n}^{2}\right)}{p_{n} \frac{1}{\sqrt{2 \pi} \theta_{1}} \exp \left(-\frac{1}{2 \theta_{1}^{2}} y_{n}^{2}\right)+\left(1-p_{n}\right) \frac{1}{\sqrt{2 \pi} \theta_{2}} \exp \left(-\frac{1}{2 \theta_{2}^{2}} y_{n}^{2}\right)}
$$

[Total marks: 20\%]

Part d

$$
\begin{aligned}
a_{n} & =p\left(y_{n: T} \mid X_{n}=1\right) \\
& =p\left(y_{n} \mid X_{n}=1\right) p\left(y_{n+1: T} \mid X_{n}=1\right) \\
& =p\left(y_{n} \mid X_{n}=1\right) p\left(y_{n+1: T}, X_{n+1}=1 \mid X_{n}=1\right) \\
& +p\left(y_{n} \mid X_{n}=1\right) p\left(y_{n+1: T}, X_{n+1}=2 \mid X_{n}=1\right) \\
& =p\left(y_{n} \mid X_{n}=1\right) a_{n+1}(1-q)+p\left(y_{n} \mid X_{n}=1\right) b_{n+1} q
\end{aligned}
$$

Similarly

$$
\begin{aligned}
b_{n} & =p\left(y_{n: T} \mid X_{n}=2\right) \\
& =p\left(y_{n} \mid X_{n}=2\right) p\left(y_{n+1: T} \mid X_{n}=2\right) \\
& =p\left(y_{n} \mid X_{n}=2\right) p\left(y_{n+1: T}, X_{n+1}=1 \mid X_{n}=2\right) \\
& +p\left(y_{n} \mid X_{n}=2\right) p\left(y_{n+1: T}, X_{n+1}=2 \mid X_{n}=2\right) \\
& =p\left(y_{n} \mid X_{n}=2\right) a_{n+1} q+p\left(y_{n} \mid X_{n}=2\right) b_{n+1}(1-q)
\end{aligned}
$$

[Total marks: 20\%]

Part e

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n}=1 \mid y_{1: T}\right) & =\frac{\operatorname{Pr}\left(X_{n}=1 \mid y_{1: n-1}\right) p\left(y_{n: T} \mid X_{n}=1\right)}{\operatorname{Pr}\left(X_{n}=1 \mid y_{1: n-1}\right) p\left(y_{n: T} \mid X_{n}=1\right)+\operatorname{Pr}\left(X_{n}=2 \mid y_{1: n-1}\right) p\left(y_{n: T} \mid X_{n}=2\right)} \\
& =\frac{p_{n} a_{n}}{p_{n} a_{n}+\left(1-p_{n}\right) b_{n}}
\end{aligned}
$$

[Total marks: 10%]

Part f

$$
\frac{d}{d \theta_{1}} \log p\left(y_{n} \mid 1\right)=-\frac{1}{\theta_{1}}+\frac{1}{\theta_{1}^{3}} y_{n}^{2}
$$

Thus answer sought is

$$
\left(-\frac{1}{\theta_{1}}+\frac{1}{\theta_{1}^{3}} y_{n}^{2}\right) \pi_{n}
$$

and

$$
\left(-\frac{1}{\theta_{2}}+\frac{1}{\theta_{2}^{3}} y_{n}^{2}\right)\left(1-\pi_{n}\right)
$$

[Total marks: 20\%]

Part g

$$
\begin{aligned}
\frac{d}{d \theta_{i}} \log p\left(y_{1: T}\right) & =\frac{1}{p\left(y_{1: T}\right)} \frac{d}{d \theta_{i}} \sum_{x_{1: T}} p\left(y_{1: T}, x_{1: T}\right) \\
& =\frac{1}{p\left(y_{1: T}\right)} \frac{d}{d \theta_{i}} \sum_{x_{1: T}} p\left(y_{1: T} x_{1: T}\right) \\
& =\frac{1}{p\left(y_{1: T}\right)} \sum_{x_{1: T}} \frac{d}{d \theta_{i}} \log p\left(y_{1: T} x_{1: T}\right) p\left(x_{1: T}, y_{1: T}\right) \\
& =\sum_{x_{1: T}} \frac{d}{d \theta_{i}} \log p\left(y_{1: T} x_{1: T}\right) p\left(x_{1: T} \mid y_{1: T}\right) \\
& =\sum_{x_{1: T}} \frac{d}{d \theta_{i}} \sum_{t=1}^{T} \log p\left(y_{t} \mid x_{t}\right) p\left(x_{1: T} \mid y_{1: T}\right) \\
& =\sum_{t=1}^{T} \sum_{x_{t}} \frac{d}{d \theta_{i}} \log p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: T}\right) \\
& =\sum_{t=1}^{T} \frac{d}{d \theta_{i}} \log p\left(y_{t} \mid x_{t}=i\right) p\left(x_{t}=i \mid y_{1: T}\right)
\end{aligned}
$$

The answer is

$$
\sum_{t=1}^{T}\left(-\frac{1}{\theta_{1}}+\frac{1}{\theta_{1}^{3}} y_{t}^{2}\right) \pi_{t}
$$

and

$$
\sum_{t=1}^{T}\left(-\frac{1}{\theta_{2}}+\frac{1}{\theta_{2}^{3}} y_{n}^{2}\right)\left(1-\pi_{t}\right)
$$

[Total marks: 20\%]
End of Question 3.

Question 4

Part a

$$
p\left(y_{1} \mid x_{1}\right)=\frac{1}{\sqrt{2 \pi x_{1}^{2}}} \exp \left(-\frac{1}{2 x_{1}^{2}}\left(y_{1}-\theta\right)^{2}\right)
$$

Take the \log and differentiate to find this mode:

$$
\frac{d}{d x_{1}^{2}} \log p\left(y_{1} \mid x_{1}\right)=-\frac{1}{2 x_{1}^{2}}+\frac{1}{2 x_{1}^{4}}\left(y_{1}-\theta\right)^{2}
$$

or $x_{1}^{2}=\left(y_{1}-\theta\right)^{2}$. So there are two distinct modes for x_{1}. The function $p\left(y_{1} \mid x_{1}\right)$ is bimodal too, close to zero for large x_{1}^{2} and similarly becoming zero as $x_{1}^{2} \rightarrow 0$ since the variance is 0 and the gaussian density will be 0 unless $y_{1}=\theta$.
$p\left(x_{1} \mid x_{0}\right)$ is a gaussian centered at $\alpha x_{0}=0$. So $p\left(x_{1} \mid x_{0}\right)$ is symmetric around 0 . The posterior will be bi-modal. The exact plot is - only a sketch showing unimodality and bimodality is needed.

[Total marks: 30\%]

Part b

Bayes theorem can be expressed as a prediction step and an update step.
The prediction step is

$$
p\left(x_{t+1} \mid y_{1: t}\right)=\int p\left(x_{t+1} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t}\right) d x_{t}
$$

The update step is

$$
p\left(x_{t+1} \mid y_{1: t+1}\right)=\frac{p\left(y_{t+1} \mid x_{t}\right) p\left(x_{t+1} \mid y_{1: t}\right)}{\int p\left(y_{t+1} \mid x_{t}\right) p\left(x_{t+1} \mid y_{1: t}\right) d x_{t+1}}
$$

[Total marks: 20\%]

Part c

$$
\begin{aligned}
\frac{d}{d \theta} \log p\left(y_{1: T}, x_{1: T}\right) & =\frac{d}{d \theta} \log \left(p\left(x_{1} \mid x_{0}\right) p\left(y_{1} \mid x_{1}\right) \cdots p\left(x_{T} \mid x_{T-1}\right) p\left(y_{T} \mid x_{T}\right)\right) \\
& =\sum_{t=1}^{T} \frac{d}{d \theta} \log p\left(y_{t} \mid x_{t}\right) \\
& =\sum_{t=1}^{T} \frac{y_{t}-\theta}{x_{t}^{2}}
\end{aligned}
$$

[Total marks: 20\%]

Part d

$$
\begin{aligned}
\frac{d}{d \theta} \log p\left(y_{1: T}\right) & =\frac{1}{p\left(y_{1: T}\right)} \frac{d}{d \theta} p\left(y_{1: T}\right) \\
\frac{d}{d \theta} p\left(y_{1: T}\right) & =\frac{d}{d \theta} \int p\left(y_{1: T}, x_{1: T}\right) d x_{1: T} \\
& =\int \frac{d}{d \theta} p\left(y_{1: T}, x_{1: T}\right) d x_{1: T} \\
& =\int\left(\frac{d}{d \theta} \log p\left(y_{1: T}, x_{1: T}\right)\right) p\left(y_{1: T}, x_{1: T}\right) d x_{1: T} \\
\frac{d}{d \theta} \log p\left(y_{1: T}\right) & =\int\left(\frac{d}{d \theta} \log p\left(y_{1: T}, x_{1: T}\right)\right) p\left(x_{1: T} \mid y_{1: T}\right) d x_{1: T} \\
& =\sum_{t=1}^{T} \int \frac{d}{d \theta} \log p\left(y_{t} \mid x_{t}\right) p\left(x_{1: T} \mid y_{1: T}\right) d x_{1: T} \\
& =\sum_{t=1}^{T} \int \frac{d}{d \theta} \log p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: T}\right) d x_{1: T} \\
& =\sum_{t=1}^{T}\left(y_{t}-\theta\right) s_{t}
\end{aligned}
$$

[Total marks: 20\%]

Part e

Convert the samples into importance samples from $p\left(x_{1: T+1} \mid y_{1: T+1}\right)$
Prediction step:
Sample $X_{T+1}^{i} \sim p\left(x_{T+1} \mid X_{T}^{i}\right)$ and extend the particle to get $X_{1: T+1}^{i}$. Do this for $i=1, \ldots, N$.
Update step:
Assign the particle $X_{1: T+1}^{i}$ the weight $W_{T+1}^{i}=p\left(y_{T+1} \mid X_{T+1}^{i}\right)$. Do this for $i=1, \ldots, N$. From the previous part, the desired estimate of $\frac{d}{d \theta} \log p\left(y_{1: T+1}\right)$ is

$$
\sum_{t=1}^{T+1}\left(y_{t}-\theta\right) c_{t}
$$

where

$$
c_{t}=\frac{\sum_{i=1}^{N} \frac{1}{X_{t}^{i}} \frac{1}{X_{t}^{i}} W_{T+1}^{i}}{\sum_{i=1}^{N} W_{T+1}^{i}}
$$

[Total marks: 10\%]
End of Question 4.

