
4F7 worked solutions May 2023

May 22, 2023

Question 1
Examiner’s comments:

A popular and well answered question. Parts a) and b) well done, although
details in b) were often inaccurate and few candidates managed the full solution.
c) was surprisingly poor given that it could technically be done by 3F3/3F8
students and the simplification result is in the data book.

Part a
Solve for h0: let Ȳi = Yi −mi then

d

dh0
E
{(

X − h0 − h1Ȳ1 − · · · − hnȲn

)2}
= 0

which gives h0 = E(X) = x.
Solving similarly, the solution for h = (h1, . . . , hn)

T solves

Σh = p

where (Σ)i,j = cov(Yi, Yj) and (p)i = cov(X,Yi).
So

A =


1 0 . . . 0
0
... Σ
0

 , b =

[
x
p

]

[30%]

Part b
We obtain immediately h0 = E(X) = 0.

cov(Yi, Yj) = E(YiYj)−E(Yi)E(Yj)

= E(X2) +E(WiWj)−E(|X|)E(|X|)

and E(WiWj) = 0 when i ̸= j.
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cov(Yi, X) = E(YiX)−E(Yi)E(X)

= E(|X|X)

Thus
Σ = diag(σ2) + (E(X2)−E(|X|)E(|X|))1n×n

and
p = E(|X|X)1n×1

where 1a×b is a a×b matrix containing all ones and diag(a) is a diagonal matrix
with the value a down its leading diagonal and zeroes elsewhere.

Subtracting row i from row j on left and right leads to hi = hj = h, say.
Then substituting hi = h into any row gives:

(n(E(X2)−E(|X|)E(|X|)) + σ2)h = E(|X|X)

from which h is obtained as:

h =
E(|X|X)

(n(E(X2)−E(|X|)E(|X|)) + σ2)

[30%]

Part c.i ∫ ∞

−∞
xp(x, y1)dx =

∫ ∞

−∞
xp(x)p(y1||x|) = 0

since xp(x)p(y1||x|) is an odd function of x. Thus E(X|Y1 = y1) = 0. [30%]

Part c.ii
Since cov(Yi, X) = E(X|X|) = 0 in this case, because:

E(X|X|) = E(X2sign(X)) =

∫
X2sign(X)p(X)dX = 0

since X2sign(X)p(X) is an odd function for any symmetric p(X), e.g. zero
mean Gaussian as in this case, we have h = 0 and thus X̂ = 0 = E(X|Y1 = y1).
[20%]
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Question 2
Examiner’s comments:

A much less popular question, though well handled by most. No parts caused
particular problems, candidates were generally well on top of this material.

Part a
With ck = 0 we have

p (Xk+1 = (ck+1, dk+1) |Xk = (ck = 0, dk))

=


θ3dk, if (ck+1, dk+1) = (ck, dk − 1)

1− θ3dk if (ck+1, dk+1) = (ck, dk)

0 Otherwise

and since prey count is zero neither prey nor predator numbers can in-
crease. Candidates gave solutions both using the transition probability matrix
and state transition diagram, both of which received credit. The transition
matrix approach is:

1 0 · · ·
θ3 1− θ3 0 · · ·

2θ3 1− 2θ3 0 · · ·

0 · · · 0 Mθ3 1−Mθ3


Here row i is Xk = (0, dk) and column j corresponds to Xk+1 = (0, dk+1).[15%]

Part b

p(d0, . . . , dn|c0, . . . , cn) =
p(d0, . . . , dn, c0, . . . , cn)

p(c0, . . . , cn)

p(c0, d0, . . . , cn, dn)∑Md

d0=1 · · ·
∑Md

dn=1 p(c0, d0, . . . , cn, dn)

Use the Markov property to further express the numerator and denominator as

p(c0, d0, . . . , cn, dn) = p(c0, d0)p(c1, d1|c0, d0) · · · p(cn, dn|cn−1, dn−1)

[15%]

Part c
The prediction step is:

p(dn−1, cn, dn|c0:n−1) = p(cn, dn|cn−1, dn−1)× p(dn−1|c0:n−1)
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So the marginal of interest is

p(cn, dn|c0:n−1) =

Md∑
dn−1=0

p(cn, dn|cn−1, dn−1)× p(dn−1|c0:n−1)

The update step is:

p(dn|c0:n) =
p(cn, dn|c0:n−1)∑Md

dn=1 p(cn, dn|c0:n−1)

[30%]

Part d
[Changing T for n]:

log p(c0, . . . , cn) = log

(∑
d0

· · ·
∑
dn

p(c0, d0, . . . , cn, dn)

)

Differentiate with respect to θi, using the result d log(f)
dx = 1/f df

dx , to get

d

dθi
log p(c0, . . . , cn) =

∑
d0

· · ·
∑

dn

d
dθi

p(c0, d0, . . . , cn, dn)∑
d0

· · ·
∑

dn
p(c0, d0, . . . , cn, dn)

=

∑
d0

· · ·
∑

dn
p(c0, d0, . . . , cn, dn)

d
dθi

log p(c0, d0, . . . , cn, dn)

p(c0, . . . , cn)

=

∑
d0

· · ·
∑

dn
p(d0, . . . , dn|c0, . . . , cn) d

dθi
log p(c0, d0, . . . , cn, dn)

p(c0, . . . , cn)

[20%]

Part e
Transition probabilities have been found in Part a. Differentiating gives

d

dθ3
log p(0, dk|0, dk−1) =

d
dθ3

p(0, dk|0, dk−1)

p(0, dk|0, dk−1)

=

{
dk−1

θ3dk−1
if dk = dk−1 − 1

−dk−1

1−θ3dk−1
if dk = dk−1

Finally,
d

dθ1
log p(0, dk|0, dk−1) =

d

dθ2
log p(0, dk|0, dk−1) = 0

[20%]
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Question 3
Examiner’s comments:

A complex and (with hindsight) probably over long question. Few candidates
made a full correct solution to b) because of the subtlety of the problem, and
‘reasonable attempts were given quite a lot of credit. Few candidates really
understood what was being asked in c).

Part a.i
The estimate is

1

N

N∑
i=1

h(θi)
p(θi|y)
q(θi)

[no self-normalisation required since p(θ|y) can be calculated explicitly.]
The mean (first moment) of the estimate is

m = Eq(1/N
∑

h(θi)p(θi|y) = N/N

∫
h(θ)p(θ|y)q(θ)/q(θ)dθ =

∫
h(θ)p(θ|y)dθ

=
1

2α

∫ y+α

y−α

h(θ)p(θ)/p(y)dθ

because p(θ|y) = p(y|θ)p(θ)/p(y) = 1
2αp(θ)/p(y) for θ ∈ [y − α, y + α).

The variance is

1

N2

N∑
i=1

Eq

((
h(θi)

p(θi|y)
q(θi)

−m

)2
)

=
1

N
Eq

((
h(θ1)

p(θ1|y)
q(θ1)

)2
)

− 1

N
m2

=
1

N

(∫
h(θ)2

p(θ|y)2

q(θ)
dθ −m2

)
=

1

N

(
1

4α2

∫ y+α

y−α

h(θ)2
(p(θ)/p(y))2

q(θ)
dθ −m2

)
[20%]

Part a.ii
Now use q(θ) = p(θ) and

p(y|θ) = 1/(2α), θ ∈ [y − α, y + α)

to get

1

N

(
1

4α2

∫ y+α

y−α

h(θ)2
(p(θ)/p(y))2

q(θ)
dθ −m2

)
=

1

N

(
1

4α2

∫ y+α

y−α

h(θ)2
p(θ)

p(y)2
dθ −m2

)
[10%]
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Part b.i

πk =


p(θ)

∏k
i=1 p(yi|θ)∫

p(θ)
∏k

i=1 p(yi|θ)dθ
=

p(θ)
∏

i 1/(2αi)∏
i 1/(2αi)

∫ y+min(αi)

y−min(αi)
p(θ)dθ

= p(θ)∫ y+min(αi)

y−min(αi)
p(θ)dθ

, θ ∈ [y −min(αi), y +min(αi))

0, otherwise

where the minumum is over i ∈ 1, 2, ..., k.
There is no prediction step since the parameter θ does not change over time.

The update step is

πk+1(θ) =
p(yk+1|θ)πk(θ)∫
p(yk+1|θ)πk(θ) dθ

=


πk(θ)∫ yk+1+ak+1

yk+1−ak+1
πk(θ) dθ

if |θ − yk+1| ≤ ak+1

0 if |θ − yk+1| > ak+1

[10%]

Part b.ii

p(y1:k) =

∫
p(θ)p(y1|θ) · · · p(yk|θ)dθ

d

da1
p(y1:k) =

∫
p(θ)

(
d

da1
p(y1|θ)

)
p(y2|θ) · · · p(yk|θ)dθ

=

∫
p(θ, y1:k)

(
d

da1
log p(y1|θ)

)
dθ

where we have used the result d log(f)
dx = 1/f df

dx .
Thus

d

da1
log p(y1:k) =

∫
p(θ|y1:k)

(
d

da1
log p(y1|θ)

)
dθ

The importance sampling estimate is(
1∑N

j=1 w
j
k

)
N∑
i=1

(
d

da1
log p(y1|θik)

)
wi

k

[20%]

Part b.iii
Resample the particles to get new samples θJ1

k , . . . , θJN

k and assign all these
particles the same weight, namely

w̄k =
1

N

N∑
i=1

wi
k.
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Now approximate πk+1(θ) by approximating the update step with the resampled
and reweighted particles:

..∫
h(θ)πk+1(θ)dθ =

∫
h(θ)p(yk+1|θ)πk(θ) dθ∫
p(yk+1|θ)πk(θ) dθ

=

∫
h(θ)p(yk+1|θ)p(θ, y1:k) dθ∫
p(yk+1|θ)p(θ, y1:k) dθ

≈
h(θJ1

k )p(yk+1|θJ1

k )w̄k + · · ·+ h(θJN

k )p(yk+1|θJN

k )w̄k

p(yk+1|θJ1

k )w̄k + · · ·+ p(yk+1|θJN

k )w̄k

Note that the term w̄k cancels out.
[20%]

Part c.i
You can choose any positive non-increasing sequence a1 ≥ a2 ≥ · · · ≥ aT = α,
since

p(Y1 = y|θ)p(Y2 = y|θ) · · · p(YT = y|θ) = p(Y = y|θ)× constant

where term ‘constant’ does not depend on θ.
[10%]

Part c.ii
No benefit since the original set of samples from time 1, namely θ11, . . . , θ

N
1

are resampled at every time step which will result in the number of unique
samples diminishing. Also, the estimate of Part (a) does not have to estimate
the denominator p(y).

[10%]
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Question 4
Examiner’s comments:

A well answered and popular question. Most made a very good attempt at
a), although there was confusion about how to deal with h0. b) required some
insight about the integrals and most candidates did not spot the symmetry in
the integrals which leads to the answer of 0

Part a.i
Set X̂0 = m and verify E(X̂1) = m. Now do the same verification to show
E(X̂n) = m when E(X̂n−1) = m.

[10%]

Part a.ii
Square the expression for X̂n −X:

X̂n −X = Gn(Vn +X − X̂n−1) + X̂n−1 −X

= GnVn + (1−Gn)(X̂n−1 −X)

(X̂n −X)2 = G2
n(V

2 + (1−Gn)
2(X − X̂n−1)

2 + 2GnVn(1−Gn)(X̂n−1 −X)

E(X̂n −X)2 = G2
nσ

2
v + (1−Gn)

2s2n−1 + 0

where s2n−1 = E((X − X̂n−1)
2).

Differentiate with respect to Gn to find minimising Gn which is Gn =
s2n−1/(s

2
n−1 + σ2

v).
[30%]

Part b.i
(x, y1) will be bivariate Gaussian as it is a product of 2 Gaussians.

Covariance matrix for (x, y1) is

S =

[
EX2 EXY1

EXY1 EY 2
1

]
−
[

EX
EY1

] [
EX
EY1

]T
=

[
σ2
0 σ2

0

σ2
0 σ2

0 + σ2
v

]
p(x, y1) is Gaussian with mean (m,m)T and covariance S. From the information
engineering data book, or from first principles, p(x|y1) is Gaussian with mean
µ1 = m + (y1 −m)σ2

0/(σ
2
0 + σ2

v) = (mσ2
v + σ2

0y1)/(σ
2
0 + σ2

v) and variance σ2
1 =

σ2
0 − σ4

0/(σ
2
0 + σ2

v) = σ2
0σ

2
v/(σ

2
0 + σ2

v).
This part can also be done from first principles from the Gaussian formulae

and not using data book - many candidates did this successfully.
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Part b.ii

p(x|y1, y2) = p(y2|x)
p(y1|x)p(x)
p(y1, y2)

= p(y2|x)
p(y1|x)p(x)

p(y1)

1

p(y2|y1)
which is the Bayes update formula for a prior p(x|y1) and likelihood p(y2|x).
We found this to be Gaussian with mean µ2 = µ1 + (y2 − µ1)σ

2
1/(σ

2
1 + σ2

v)
and variance σ2

2 = σ2
1σ

2
v/(σ

2
1 + σ2

v). Iterating gives the desired mean and vari-
ance solution. Can also be done from first principles (multiplying out the
Gaussians and completing the squares of the exponent), resulting in: µn =
(mσ2

v + σ2
0

∑n
i=1 yi)/(nσ

2
0 + σ2

v) and variance σ2
n = σ2

0σ
2
v/(nσ

2
0 + σ2

v)

Part b.iii
Use E(X|y1:n) = µn. This is unbiased because∫

E(X|y1:n)p(y1:n)dy1:n =

∫ ∫
xp(x|y1:n)p(y1:n)dxdy1:n =

∫
xp(x)dx = E(X)
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