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Worked Solutions
Worked Solutions

EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 30 April 2025 9.30to 11.10

Module 4F7
STATISTICAL SIGNAL AND NETWORK MODELS

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the
exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Examiner’s comment: A popular question, well answered by most. Part a)i) The
state space model well known but many missed the initial conditions and stated in terms
of Gaussians rather than expectations. a)ii) Well known but many missed the initial
conditions a)iii) Good a)iv) good although many only got that it was BLUE b)i) Good.
b)ii) Good b)iii) OK but some got the variance term wrong.

The Kalman filtering recursions for a linear state-space model, based on data yq , y7, ...ys,

are expressed as

Htlt—-1 = A/Jt—1|t—1
T
Po1 =2y + AP A
Helr = He|r—1 F Ki(y: - B.Ut|t—1)
Pt|t = - KZ‘B)Pt|t—l
_ T T -1

where the terms y,;;_1 and ), are estimators of a hidden state variable x;.

(@) (i) Write down an appropriate linear state-space model that is solved by
these recursions, including the initialisation at # = 0. What do the terms X, and X,

signify?

Solution:

Xt =Ax;_1 +vy, E[ve] =0, cov[vs] =2y
yt = Bxt +wy, E[wi] =0, covlwi] =Zy

w; and v; serially uncorrelated. Exg = uojo, cov|[xg] = Poo-

(i)  Under what conditions on the state-space model do 1|, and ), give optimal
Bayesian estimators of the state?

Solution:
Conditions are as in (i) (linear), plus Gaussian model,
V[ l’lg N(O’ ZV)

we N0, 2)

x0~N (1o|0- Pojo)
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(iii) Under these conditions, what are the conditional distributions p(x;|y{.;) and
p(xelyr:-1)? [15%]

Solution:
p(xtly1y) = N(:ut|t7 Pt|t) and p(x;|y1-1) = N(/Jt|t—17 Ptlt—l)

(iv) When these conditions may not be assumed, what form of optimality is
achieved by the Kalman filter recursions? [10%]

Solution:
The Kalman filter in this case is the best linear estimator for x; in a MMSE sense.

(b)

A stochastic differential equation is defined as

x(t) = ax(t) + W(r)

where {W (1)} is continuous-time zero-mean Gaussian white noise with autocorrelation

function Ryw(t) =d6(7) and a < 0.

(i) Using Laplace transforms, or otherwise, show that

ot
x(6t) = exp(adt) (x(O) +/ exp(—at)W(r)dr
0

[20%]

Solution:
Take Laplace transforms of both sides:

sX(s) —x(0) = aX(s) + W(s)
Rearranging:

X(s) = ! x(0) +

|
(s —a) (s —a) Wis)

and taking ILT:

x(t) = exp(at)x(0) + /t exp(a(t —1))W(r)dt
0

Now, shifting time interval to start at ¢ and end at ¢ + ¢¢, since the SDE is time-
homogeneous:

ot ot
x(t+6t) = exp(aét)x(t)+/ exp(a(dt—7))W(r)dt = exp(adt) (x(t) +/ exp(—at)W(r)dt
0 0
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(ii) Determine the mean and variance of the integral term foét exp(—at)W(r)dr.

[25%]
Solution:
o o
E/O Pexp(—at)W(r)dt = /0 "exp(—at)EW(1)dt = 0.
ot Ot Ot
var/ exp(—at)W(r)dr = E/ eXp(—aT)W(T)dT/ exp(—at" )W (") dr’
0 0 0
Ot Ot
= / / exp(—at)E[W(T)W(1")] exp(-at’)d7' dr
0 0
Ot Ot
= / / exp(—at)dé(t — ') exp(—at’)dr’ dr
0 0
Ot
:/ exp(—at) exp(—art)dt
0
1 ot
= _—2(1[exp(—2a7')]0
1 1
= —(exp(—2adt) — 1) = — (1 — exp(-2adt))
—2a 2a
(iii) Hence write down a linear Gaussian dynamical model in discrete time for
samples x, = x(ndt). [10%]
Solution:
As in a)(i) with:

A =exp(adt) and
%, = exp(2ad;)5-(1 — exp(—2adt)) = 5 (exp(2ast) — 1)

The extra term exp(2ad;) arises because the integral is multiplied by exp(ad;) and

2

cov(aX) = a“covX.

2 Examiner’s comment: A less popular question, but quite well answered. Parts
a) — c¢) well handled in general — good skill in linearising the state space model. Part
d) generally well done, a few very vague summaries of the EKF update. e) again well
answered although many (most) neglected to give the actual formula for the incremental
weight.

A nonlinear dynamical system obeys the following dynamical model for ¢t = 1,2, ...,:
Xy =m/2sin(x;_1) + vy
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and the state is observed in noise:
2
Vi =X; +wy

where v; ~ N(O, 0'3) and w; ~ N(O, 0'3",) are mutually uncorrelated white noise

processes.

(a) Derive a linear and Gaussian approximation of the dynamical system expanded
around a fixed point x;,_; = x". [15%]

Answer: dsin(x)
/2 sin(x

= /2 cos(x)

xr =~ m/2sin(x*) + (x;_1 —x™)m/2cos(x™) + vy

(b) Derive a linear and Gaussian approximation of the observation model, expanded
around a fixed point x; = x*. [10%]

Answer:
dx? [dx = 2x

Vi & g 2xT (xr = xT) + wy

(c)  Suppose that p(x;_1|v1:1=1) = N (-1 ,ptz_l) where p;_ is a standard deviation.

Show that the prediction step under the approximate dynamical system is:
POty 1) & N(r/2sin(x") + (py—y = x")m/2cos(x"), 7° /4 cos”(x)p;_; +07)

[20%]

Answer:

In the approximation we have:

xp =~ m/2sin(x™) + (x,_1 —x")m /2 cos(x™) + vy

But x;_1 ~ N(,u,_1,pt2_1), and we know that if X ~ N(u,02) thenY = aX +b+V ~

2

N(ap + b, a0? + o). Combining the two:

xp ~ N(n/2sin(x*) + (-1 —x*)m/2 cos(x*), 1% /4 cos® (x*) p?_ | + 0P

as required.
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(d) Explain how sequential estimation of x; in this approximate model can be
implemented as an Extended Kalman Filter, stating carefully how x* and x™ are chosen and
detailing how the update step of the Kalman Filter is modified compared with the standard
KF. [35%]

Answer:

First, we expand the prediction step around x* = p;_;:

Xt ~ N (x/2sin( 1)+ (g1 =p- )72 cos(x), 7 [4 cos? (xF) p}_ +07) = N (/2 sin(py—1), 77 /4 cos” (3

Thus the EKF prediction step is: p;),_1 = 71/2sin(y;_1) and P,2|t_1

oy

=72 /4 COS2(X*)pt2_1 +

Now, express the approximate observation equation around x* = Heft—1
2
Yt = Hgjp—1" + 2:“t|t—1(xt - ﬂt|t—1) Wy
This can be arranged as a pseudo-observation equation:
- 2_»
Yt =YVt + Hy|r—17 = 2-y)e—1Xt + Wi

We now carry out the standard Kalman update with observation matrix B = 2,_1,

observation y; = y; + :utlt—12 and observation variance o'vzv.

(e) If this model were also implemented using a particle filter, using the ‘prior’ proposal
distribution p(x¢|x;_1), compare and contrast the likely performance of the two filters.
Determine the incremental weight of the particle filter with this proposal distribution. [20%]

Answer:

The EKF is sub-optimal and we cannot adjust its performance. But it is cheap to
implement. The PF is adjustable and tends towards optimal as number of particles gets
very large. Can then be very expensive to implement - trade-oft! Another important point
is that the observation density is multimodal because of the x2 term. Hence the EKF is
likely to track the wrong mode and the particle filter at least has a chance of covering both

modes.

Incremental weight in this case (‘bootstrap’ filter):
. . N2
wi) e pyeb NG o)

Weights to be normalised to sum to 1.
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3 Examiner’s comment: This question was generally answered to a high standard.
Part (a) was straightforward. Some answers got confused in (b) and (c) when taking
derivatives of a sum, while some answers to part (d) appeared to fudge the 6; term. Part
(e) was more variable and distinguished the good from the very good answers. Some of
the good answers were still not fully incisive. For example, some argued that when using
MLE parameters the model could not scale appropriately — this essentially gets at the issue
but doesn’t quite show that no set of parameters can have the desired scaling.

Consider a model for directed graphs on n nodes, where the edge from i to j occurs with
probability p;;. The adjacency matrix is defined such that

A;j ~ Bernoulli(p; )

and we allow self-edges to occur.

(a)  Show that the log-likelihood for p;; given adjacency matrix A is

Z (Aijlog pij + (1 — A;j) log (1 = pij))
i,j

[20%]

A A '
Solution: The probability of each edge is P(A;;) = pl.j] (1-pi j)l Aij | Bach edge is
independent, so the probability of the full matrix A is the product over all i and j. Taking

the logarithm gives

log P(Alp) = Z (Aijlog pij + (1 — A;j)log(1 - p;j))
i,j

(b) Find the maximum likelihood estimate (MLE) for the parameters p;;. [20%]

Solution: The MLE are the values of p;; that maximize log P(A|p), so we need

dlog P(Alp) _ Aij _1-Aij
dpij pij 1-pij

This is solved with p;; = A;;.
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(c)  We now constrain the parameter matrix p;; to be of the form

pij = 0;
Show that the MLE is | .
A i
=t Sy
J
where k; = )} j Ajj 1s the out-degree of node i. [20%]

Solution: The log-likelihood is now

Z (Aij 10g9i + (1 - Aij) log(l — Qi))
L.J
and taking derivative wrt 6; we get

e R A
i\ g 1-0;,) 0, 1-6;

from which simple algebra establishes §; = k;/n.

(d) A reciprocal edge is an edge that exists in both directions, i.e., A; j=Aji= 1 (note,
we will not count self-edges as reciprocal). Show that the expected number of reciprocal
edges at node i is

0; 29]' —-6;
J

and the total number is thus

() -3

i

[20%]

Solution: A reciprocal edge exists if A;jA;; = 1, so the expected number is
2. j# E[AijAji]. By independence we have

ZE[AijAji] = ZE[Aij]E[Aji] = Z 0;6; = 0 Z 0 —0i
J#i J#i J#i 7

The total number is this quantity summed over all i, which is precisely the formula given.
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(e) For online social networks, both the number of edges and the number of reciprocal
edges typically scale linearly with n. Show that in this model, one cannot have both. [20%]

Solution: The expected total number of edges is »}; ; ¢; = n 3; 6;. For this to be O(n) we
must ask that }}; 6; is O(1).

However, the number of reciprocal edges is less than (}}; 0,-)2, which is an O(1) quantity
squared, and hence O(1).

Hence, in this model if the number of edges is O (n) then the number of reciprocal edges
is0(1).
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4 Examiner’s comment: The weakest question on average but also a high variance.
This was the only question with a handful of very incomplete answers. Removing these
attempts raises the mean in line with other questions. Parts (a) and (b) had no major issues
for most candidates. Using the variable u instead of w in part (c) caused some confusion
but generally did not cause substantive issues — several students reverted to using w but
gave otherwise correct answers. Part (d) was well answered by students who had correctly
answered (c) but others failed to use the solution given in (c) to answer (d). For part (e),
some answers correctly computed u = 1/2 but then incorrectly provided that as the final

answer.
Consider a configuration model network that contains only nodes of degree 1 and degree

3. A fraction «a of the nodes have degree 1, while a fraction 1 — @ have degree 3. Hence,
the degree distribution is

Pk=adp 1+ (1l —a)di3

(a) What is the mean degree? [10%]

The mean degree is
kak =a+3(1l-a)=3-2a
k

(b) Provide an expression for the excess degree distribution, gy . [15%]

The excess degree distribution is g = (k + 1)pr41/E[k], hence

(k+1Dadgsr g+ (k+1)(1 —a@)dgp13  a@dgo+3(1—a)do
qk = =
3 -2« 3 -2«

(c) Let u be the probability that a randomly chosen edge does not lead to the giant
component. Show that u obeys the self-consistent equation

@_lﬂ”_3f&):0

[35%]

The equation for u is u = ) ukq k- Inserting the formula for g; we get

o« +3—3a )
T 3_20 "3-2a"

u
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Re-arranging to be in a standard quadratic form we have

3-2«a a
2— =
u (3—3a)”+3—3a 0

which factorizes to the stated quadratic.

(d) Hence, argue that a giant component exists if and only if @ < 3/4. [15%]

The quantity u is the probability that a randomly chosen edge does not lead to the giant
component. The non-trivial root is at u = ﬁ For a giant component this must be less
than 1, hence ﬁ < 1. This occurs when a < 3/4.

(e) Derive an expression for the fractional size of the giant component when o = 3/5. [25%)]

When o =3/5thenu = ﬁ = % Let s be the probability a randomly chosen node is not
in the giant component. We have s = >} p kuk, N

l-a 3 2 7

a
— 4+ = =
2 23 10 40 20

s

or 35%.

END OF PAPER
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