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EGT3
ENGINEERING TRIPOS PART IIB

Friday 2 May 2014 9.30 to 11

Module 4F7

DIGITAL FILTERS AND SPECTRUM ESTIMATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Describe in detail the Least Mean Square (LMS) algorithm for adaptive
filtering, with all signals clearly defined. [20%]

(b) The constant step-size µ of the LMS algorithm is replaced by µR−1 where R is the
input signal autocorrelation matrix.

(i) Determine the conditions on µ for the expected value of the filter coefficients
of this modified LMS algorithm to converge to the Wiener solution. [30%]

(ii) State, with reason, the value of µ for which convergence is the fastest. [5%]

(iii) Since R is not known in general, propose a practical implementation of this
modified LMS algorithm. [10%]

(iv) Contrast the performance of this modified LMS algorithm with that of the
LMS and exponentially weighted Recursive Least Squares algorithm. [10%]

(c) You are given samples x(n) from the AR(1) model

x(n) = αx(n−1)+w(n)

where |α| < 1 and w(n) are independent and identically distributed zero-mean random
variables with variance σ2.

(i) Describe an implementation of the LMS algorithm to learn α . [10%]

(ii) Give a bound on the LMS step-size, in terms of the parameters of this AR(1)
process, that ensures the LMS filter coefficients converge in expected value to α . [15%]
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2 (a) Let {u(n)}n≥0 be the input to a finite impulse response (FIR) filter of order
M and {y(n)}n≥0 be the corresponding output. The impulse response of the filter is
unknown.

(i) Given the input and output sequences, minimise the following exponentially
weighted least squares cost function

n

∑
k=0

λ
n−k

(
y(k)−hT u(k)

)2

with respect to the vector h, where u(n) = [u(n),u(n− 1), . . . ,u(n−M + 1)]T and
0 < λ ≤ 1 is the forgetting factor. [30%]

(ii) Show that the minimiser, h(n), can be expressed as

R(n)h(n) = p(n)

where the matrix R(n) and vector p(n) are to be defined. [5%]

(iii) Express R(n) and p(n) in terms of their values at time n−1. [5%]

(iv) For M = 1, show that the scalar valued minimiser can be expressed recursively
as

h(n) = h(n−1)+K(n)u(n)(y(n)−u(n)h(n−1))

where the gain K(n) is to be defined. [20%]

(b) Consider the following AR(1) process

x(n) = βx(n−1)+w(n)

where |β | < 1 and w(n) are independent and identically distributed zero-mean random
variables with variance σ2.

(i) Given x(−1),x(0), . . . ,x(n), solve for the exponentially weighted least
squares estimate of β . [20%]

(ii) For λ = 1, obtain the limit of this estimate as n tends to infinity. [10%]

(iii) Show that this limit is β . [10%]
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3 Consider the following model for a complex frequency component observed in
noise

xn = aexp(iω0n)+ en

where a is a real scalar amplitude, ω0 a real frequency and {en} is an independent
complex Gaussian noise sequence. This means that the real and imaginary parts of
en are independent zero mean Gaussian variables with identical variance σ2. Thus the
probability density of en is

1
2πσ2 exp

(
−|en|2

2σ2

)
.

(a) Show that the conditional probability density of the data sequence x0, . . . ,xN−1
given a, i.e. p(x0, . . . ,xN−1|a), is

N−1

∏
k=0

1
2πσ2 exp

(
−|xk−aexp(iω0k)|2

2σ2

)
.

[5%]

(b) Assuming ω0 is known, show that the Maximum Likelihood solution for a is the
minimiser of the quadratic cost function

N−1

∑
k=0
|xk−aexp(iω0k)|2 .

[5%]

(c) Hence show that the Maximum Likelihood solution for a is the real part of

1
N

N−1

∑
k=0

xk exp(−iω0k).

[40%]

[Hint: d
da |xk−aexp(iω0k)|2 can be obtained by writing | · |2 as the sum of the squares of

its real and imaginary parts.]

(d) Find an expression for E{en+ke∗n}. [10%]

(e) Find the autocorrelation function RXX [k] = E{xn+kx∗n} and power spectrum of xn. [30%]

(f) Explain carefully why the periodogram estimate of the power spectrum could be
used to estimate ω0 if it were unknown. [10%]
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4 (a) Describe the parametric approach to power spectrum estimation, including a
brief description of how the spectrum is estimated. [25%]

(b) You are given the scalar data points x0, . . . ,xN−1. We may fit an AR(P) model to
the data by minimising the following mean square prediction error for this data sequence

N−1

∑
n=P

(
xn−aT xn−1

)2

where a = [a1, . . . ,aP]T are the AR model coefficients and xk = [xk, . . . ,xk−P+1]T .

(i) Explain why the sum begins at P. [5%]

(ii) Show that the a that minimises the mean square prediction error satisfies

N−1

∑
n=P

xnxn−1 =

(
N−1

∑
n=P

xn−1xT
n−1

)
a.

[15%]

(iii) Explain how these simultaneous equations for a1, . . . ,aP relate to the Yule-
Walker equations for fitting the AR(P) model. [5%]

(iv) How do you estimate the variance of the driving noise of the AR(P) model? [5%]

(c) Let
xn = wn +wn−2

where wn is a sequence of independent random variables with zero mean and unit
variance.

(i) Obtain the power spectrum of {xn}. [10%]

(ii) Compute the expected value of the periodogram estimate from samples
x0,x1, . . . ,xN−1 of the process. [35%]
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