
Solutions: 4F8 2012

ENGINEERING TRIPOS PART IIB

Monday 7 May 2012 9 to 10.30

Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Version: JL02

2

1 (a) For rectangular sampling, our sampling function s(u1,u2) is given by

s(u1,u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ (u1−n1∆1,u2−n2∆2)

where ∆i is the sampling interval in the ui direction.

For diamond sampling, our sampling function s(u1,u2) is given by s = s1+ s2 with

s1(u1,u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ [u1−2n1∆1,u2−2n2∆2]

and

s2(u1,u2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ [u1− (2n1 +1)∆1,u2− (2n2 +1)∆2]

where ∆1 and ∆2 are as shown in fig 1

u
2

u
1

∆
1

∆
2

Fig. 1

[15%]

(b) For the rectangular sampling function s in part (a), we can write it as a Fourier
series as it is periodic in both the u1 and u2 directions:

s(u1,u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c(p1, p2)e j(p1Ω1u1+p2Ω2u2)

where Ω1 = 2π

∆1
and Ω2 = 2π

∆2

Version: JL02 (cont.

3

To find the c(p1, p2) we perform the standard integral

c(p1, p2) =
1

∆1 ∆2

∫ ∆2
2

−∆2
2

∫ ∆1
2

−∆1
2

s(u1,u2)e− j(p1Ω1u1+p2Ω2u2) du1 du2

which evaluates to give c(p1, p2) =
1

∆1∆2
for all p1, p2.

We can then express the sampled image as

gs(u1,u2) = g(u1,u2)
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

e j(p1Ω1u1+p2Ω2u2)

and using the frequency shift theorem to take the Fourier transform, we get

Gs(ω1,ω2) =
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G(ω1− p1Ω1,ω2− p2Ω2)

From this we can see that the spectrum of the sampled 2D signal is the periodic
repetition of the spectrum of the unsampled signal at every grid/sampling point. Thus, if
our sampling intervals are less than twice the largest directional frequencies (ΩB1,ΩB2),
we will have overlap of the spectra and hence aliasing, as illustrated in fig. 2:

Fig. 2

[30%]

(c) The side of the hexagonal grid is d, so we can form the whole grid by
summing 4 rectangular grids as follows:

Version: JL02 (TURN OVER for continuation of SOLUTION 1

4

(i) s1(u1,u2) is centred on the origin and has a horizontal spacing, ∆h, of
3d and a vertical spacing, ∆v, of d

√
3 – this grid is picked out with large

circles in fig 3.

u1

u2
d

Fig. 3

s2(u1,u2) is displaced by (2d,0) from the origin and has a horizontal
spacing, ∆h, of 3d and a vertical spacing, ∆v, of d

√
3 – this grid is picked out

with large circles in fig 4.

u1

u2
d

Fig. 4

s3(u1,u2) is displaced by (3d/2,d
√

3/2) from the origin and has a
horizontal spacing, ∆h, of 3d and a vertical spacing, ∆v, of d

√
3 – this grid is

picked out with large circles in fig 5.
s4(u1,u2) is displaced by (d/2,d

√
3/2) from the origin and has a

horizontal spacing, ∆h, of 3d and a vertical spacing, ∆v, of d
√

3 – this grid is
picked out with large circles in fig 6.

The sampled signal is therefore

gs(u1,u2) = g(u1,u2)(s1 + s2 + s3 + s4)

Since s2,s3,s4 are just shifted versions of s1, if s1 has Fourier

Version: JL02 (cont.

5

u1

u2
d

Fig. 5

u1

u2
d

Fig. 6

coefficients c1(p1, p2), we know that s will have Fourier coefficients, cs, given
(via the shift theorem) by

cs(p1, p2) = c1(p1, p2)

(
1+ e− j 4

3 π p1 + e− j(π p1+π p2)+ e− j(π
3 p1+π p2)

)
The above factors are obtained from the fact that s1(u1 − a1,u2 −

a2) will acquire a factor of e− j(a1 p1Ω1+a2 p2Ω2) relative to the Fourier
coefficients of s1(u1,u2). As before, c1(p1, p2) =

1
3
√

3d2 . [30%]

(ii) From part (b) we know that we can write the FT of the sampled signal
Gs as

Gs(ω1,ω2)=
1

3
√

3d2

∞

∑
p1=−∞

∞

∑
p2=−∞

[
1+ e− j 4

3 π p1 + e− j(π p1+π p2)+ e− j(π

3 p1+π p2)
]

G(ω1− p1Ω1,ω2− p2Ω2)

since ∆1 = 3d, ∆2 = d
√

3. As usual, Ω1 = 2π/∆1 and Ω2 = 2π/∆2.

Thus, f (d) = 1
3
√

3d2 , α1 = 2π

3d , α2 = 2π

d
√

3
and Z = e− j 4

3 π p1 +

e− j(π p1+π p2)+ e− j(π
3 p1+π p2). [25%]

Version: JL02 (TURN OVER

6

2 (a) Histogram equalisation:

(i) The probability of X lying between x and x+ δx, must be the same as
the probability of g(X) = Y lying between y and y+δy. Therefore

Pr{x≤ X < x+dx}= Pr{y≤ Y < y+dy}

so that
pY (y)dy = pX (x)dx =⇒ pY (y) =

pX (x)
dy
dx

If pY (y) is to be constant over the greylevel range 0 to L, we have pY (y) =
1/L, which leads to

dy
dx

= LpX (x) =⇒ y = g(x) =
∫ x

0
L pX (u)du

If the input image is quantised into NL levels xi spaced by ∆xi, we can
approximate the above integral by a sum

yk =
k

∑
i=1

LpX (xi)∆xi for k = 1, ..,NL

We now approximate pX (xi)∆xi by referring to the image histogram and
counting the number of occurrences, Ni, in xi to xi +∆xi, so that pX (xi)∆xi =

Ni/(N×M). The mapping rule therefore becomes

yk =
k

∑
i=1

L
Ni

NM

[20%]

(ii) The image histogram is shown in fig. 7.
We see that the greylevels are concentrated towards the ‘black’ and

‘white’ regions, with very little in the middle ‘grey’ area. [10%]

(iii) To find the set of transformed values set up a table which tabulates Ni,
Ci = ∑

i
j=1 N j and yi. Note that in this case N×M = 36 and L = 6, so that

L/(NM) = 1/6
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ni 6 4 3 2 1 1 1 0 0 0 0 1 1 1 2 3 4 6

Ci 6 10 13 15 16 17 18 18 18 18 18 19 20 21 23 26 30 36

Ci/6 1 1.67 2.17 2.5 2.67 2.83 3 3 3 3 3 3.17 3.33 3.5 3.83 4.33 5 6

y(i) 1 2 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 6

Version: JL02 (cont.

7

The new image histogram is shown in fig. 8.
As we can see, the process has done a reasonable job of spreading out

the distribution of pixels across the chosen greylevels. Reducing the number
of levels to 6 has made it easier to produce a more uniform distribution –
but at the cost of reducing the dynamic range in the image, which would not
produce an aesthetically pleasing effect. [20%]

Fig. 7

Fig. 8

(b) Wiener filter etc

(i) In the expression

P(x|y) ∝ e−
1
2 [(y−Lx)T N−1(y−Lx)+xTC−1x]

Version: JL02 (TURN OVER for continuation of SOLUTION 2

8

The prior is exTC−1x and represents a scenario where x is a Gaussian
random variable described by a known covariance matrix C = E[xxT].

The likelihood is P(y|x) = e(y−Lx)T N−1(y−Lx), where we are making
the assumption that our noise is Gaussian and described by the covariance
matrix N = E[ddT], where y = Lx+d. [10%]

(ii) This is effectively an exercise in completing the square:

(x− x̂)T M−1(x− x̂) = xT M−1x−xT M−1x̂− x̂T M−1x+ x̂T M−1x̂

Equate the quadratic term in x between the two expressions for the posterior:

xT M−1x = xT LT N−1Lx+xTC−1x = xT
(

LT N−1L+C−1
)

x

So that

M = (C−1 +LT N−1L)−1

If the Wiener filter is given by x̂ = Wy, then equating the terms in
xT (..)y gives:

M−1W = LT N−1

[Note that equating terms in yT (..)x gives N−1L = W T M−1, which is
equivalent to the above due to the fact that N and C are covariance matrices
and therefore N−1 = (N−1)T , M−1 = (M−1)T .]

Therefore, W = MLT N−1, so that

W = (C−1 +LT N−1L)−1LT N−1

[30%]

(iii) Since the world is not as simple as the Wiener filter assumes, we are
forced to consider alternative priors. One such prior which has been widely
and successfully used is the entropy prior.

This produces the Maximum Entropy Method (MEM) which is applied
to positive, additive distibutions (PADS). Let x be the (true) pixel vector we
are trying to estimate, Pr(x) is given by

Version: JL02 (cont.

9

Pr(x) ∝ eαS

where one version of the entropy S (sometimes known as the cross
entropy) of the image is given by

S(x,m) = ∑
i

[
xi−mi− xi ln

(
xi
mi

)]
where m is the measure on an image space (the model) to which the

image x defaults in the absence of data. (Can see global maximum of S occurs
at x = m.)

[Other image priors could be discussed] [10%]

Version: JL02 (TURN OVER

10

3 (a) The block diagram of a basic image coding system is shown in fig 9.

Fig. 9

Encoder:

(i) Energy compression compresses most of the energy of image x into a
small proportion of coefficients in matrix y.

(ii) The quantiser represents y by integers q using some pre-defined
quantising strategy. Ideally a high proportion of elements of q should be zero.

(iii) The entropy coder converts the integers of q into a binary data-stream d,
so that all the information in q is retained in d while minimising the number
of bits in d.

Decoder:

(i) The entropy decoder recovers q (exactly) from d.

(ii) The inverse quantiser generates ŷ from q, in such a way that the mean
quantising error energy of (y− ŷ) is minimised.

(iii) The reconstruction block converts ŷ back into x̂, such that if ŷ = y, then
x̂ = x.

[25%]

(b) The two main classes of image transform used in the energy compression and
reconstruction blocks of a typical coder are:

•The Discrete Cosine Transform (DCT)

•The Discrete Wavelet Transform (DWT)

Version: JL02 (cont.

11

The DCT is a block transform which operates in 2D on an N×N block of pixels.
Usually each N×N block in an image is non-overlapping with other blocks. It is relatively
simple and fast to compute, but strongly DCT-compressed images often suffer from
blocking artifacts caused by significant discontinuities at the boundaries of the N ×N
blocks.

The DWT is a filtering-based transform in which convolution allows the transform
basis functions to overlap in a smoothly decaying way. Hence blocking artifacts are
largely avoided. However, the DWT is computationally more complex than the DCT.
The DWT is also multi-scale, so the high frequency basis functions are much smaller than
the low frequency ones. This helps to minimise visibility of high frequency artifacts as
they are localised better than in the DCT. [25%]

(c)

T =
1√
2

[
1 1
1 −1

]
Forward transform:

In 1D, y = T x where x and y are 2×1 vectors.

In 2D, Y = T XT T where X and Y are 2× 2 matrices. Left multiplication by T
transforms columns of X and right multiplication by T T transforms rows of X .

Inverse transform:

In 1D, x = T−1y = T T y if T is orthonormal.

In 2D, X = T−1Y T = T TY T if T is orthonormal.

The Haar matrix for T is orthonormal because the dot product of any two columns
or of any two rows is zero, and the energy of each row or column is unity. It is well known
that multiplying a vector or matrix by an orthonormal (or unitary) matrix preserves the
energy of the input vector or matrix. This is because

yT y = xT T T T x = xT Ix = xT x

since T T T = I. [25%]

(d) A 1-level Haar transform of an N×M image matrix results in four separate
N
2 ×

M
2 image matrices after coefficient reordering. These 4 subbands are known as

Hi−Lo, Lo−Hi, Hi−Hi and Lo−Lo.

Version: JL02 (TURN OVER for continuation of SOLUTION 3

12

A 2-level Haar transform applies the same process again to the Lo− Lo subband
from level 1 and generates 4 subbands of size N

4 ×
M
4 , to replace the N

2 ×
M
2 Lo− Lo

subband from level 1.

Hence for the 1024×768 image given, we have

Band Level Size Entropy No. of bits (rounded up)
Hi-Lo 1 512×384 1.2 235930
Lo-Hi 1 512×384 1.2 235930
Hi-Hi 1 512×384 0.8 157287
Hi-Lo 2 256×192 2.5 122880
Lo-Hi 2 256×192 2.5 122880
Hi-Hi 2 256×192 1.8 88474
Lo-Lo 2 256×192 5.6 275252
Total bits 1238633

Hence approx 1.24 Mbits would be needed to code this image (approx
1.58bit/pixel). [25%]

Version: JL02

13

4 (a) A sketch of a two-band analysis/reconstruction filter bank system is shown in
figure 10 ((a) shows analysis and (b) shows reconstruction).

Fig. 10

The downsamplers by 2, omit all samples y(n) when n is odd.

The upsamplers by 2, insert zeros in place of the missing odd-numbered samples. [20%]

(b) We are given that ŷ(n) = y(n) when n is even and ŷ(n) = 0 when n is odd. We
know that

Y (z) =
∞

∑
−∞

y(n)z−n ≡ ∑
n even

y(n)z−n

= ∑
all n

1
2
[
y(n)z−n + y(n)(−z)−n]

=
1
2 ∑

all n
y(n)z−n +

1
2 ∑

all n
y(n)(−z)−n

=
1
2
[Y (z)+Y (−z)]

[20%]

(c) For the filter banks in part (a) we have

Y0(z) = H0(z)X(z) and Y1(z) = H1(z)X(z)

Ŷ0(z) =
1
2
[Y0(z)+Y0(−z)] and Ŷ1(z) =

1
2
[Y1(z)+Y1(−z)]

and

Version: JL02 (TURN OVER for continuation of SOLUTION 4

14

X̂(z) = G0(z)Ŷ0(z)+G1(z)Ŷ1(z)

Combining these expressions we have:

X̂(z) =
1
2

G0(z) [H0(z)X(z)+H0(−z)X(−z)]+
1
2

G1(z) [H1(z)X(z)+H1(−z)X(−z)]

=
1
2

X(z) [G0(z)H0(z)+G1(z)H1(z)]+
1
2

X(−z) [G0(z)H0(−z)+G1(z)H1(−z)]

For antialiasing, the X(−z) term must be zero and so we require that

G0(z)H0(−z)+G1(z)H1(−z) = 0

For perfect reconstruction, the X(z) term must be multiplied by unity, so we require
that

G0(z)H0(z)+G1(z)H1(z) = 2

[25%]

(d) To satisfy the antialiasing condition and make G1(z) and H1(z) highpass when
G0(z) and H0(z) are lowpass, we let

G1(z) = zkH0(−z) and H1(z) = z−kG0(−z)

with k being an odd integer (usually ±1).

Then the perfect reconstruction (PR) condition becomes

G0(z)H0(z)+G0(−z)H0(−z) = 2

or
P(z)+P(−z) = 2

since P = G0H0.

For symmetric left/right and up/down filter behaviour in images, we usually assume
linear-phase filters, so that p−n = pn.

The PR condition causes all odd coefficients pn in P(z) to be cancelled when it is
added to P(−z), so it only constrains the even coefficients.

Version: JL02 (cont.

15

Hence p0 = 1 and p2, p4, p6, ... are all zero. Thus P(z), with symmetry, will be of
the form

P(z) = . . .+ p5z5 + p3z3 + p1z1 +1+ p1z−1 + p3z−3 + p5z−5 + . . .

The design process is to find a good set of coefficients, {p1, p3, p5, . . .}, such that
P(z) is a well-shaped lowpass filter that can be factorised into two lowpass filters H0(z)
and G0(z).

To ensure symmetry, it is usual to let Z = 1
2(z+ z−1) and write P(z) = Pt(Z), where

Pt(z) contains only positive odd powers of Z as well as a constant term of unity. It is
usually easier to find the coefficients of Pt than those of P, as there are only half as many
of them.

If the factors of P(z) are such that H0(z) is more smooth than G0(z), the
reconstructed image will tend to contain artifacts that are more visible because of the
‘roughness’ of G0. It is therefore better to swap the factors so that G0 is always smoother
than H0, and the reconstructed image is then as smooth as possible. [35%]

END OF SOLUTIONS

Version: JL02

