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ENGINEERING TRIPOS PART IIB: SOLUTIONS
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Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.
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Single-sided script paper
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CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

Page 1 of 16



Version JL/2

1 (a) (i) The sampling grid s(u1,u2) can be expressed as a sum of two
rectangular sampling grids, s1 and s2, as follows

s(u1,u2) = s1(u1,u2)+ s2(u1,u2)

=
∞

∑
n1=−∞

∞

∑
n2=−∞

δ [u1−n1∆1,u2−n2∆2]+δ [u1− (n1 +
3
4
)∆1,u2− (n2 +

1
2
)∆2]

with ∆1 = ∆ and ∆2 = ∆/2.

The Fourier series expressions for s1 and s2 are

s1(u1,u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c1(p1, p2)e j(p1Ω1u1+p2Ω2u2)

and

s2(u1,u2) =
∞

∑
p1=−∞

∞

∑
p2=−∞

c2(p1, p2)e j(p1Ω1u1+p2Ω2u2)

where Ω1 = 2π

∆1
= 2π

∆
and Ω2 = 2π

∆2
= 4π

∆
. As s1 is simply a rectangular grid

centred on the origin, we know that the Fourier coefficients are given by

c1(p1, p2) =
1

∆1∆2
=

2
∆2

Grid s2 is simply a translated s1. The shift theorem tells us that s1(u1−a1,u2−a2)

will acquire a factor of e− j(a1 p1Ω1+a2 p2Ω2) relative to the Fourier coefficients of
s1(u1,u2). Thus,

c2(p1, p2) = c1(p1, p2)e
− j(3∆

4 p1Ω1+
∆
4 p2Ω2) = c1(p1, p2)e

− j(3π
2 p1+π p2)

Therefore our final Fourier series expressions for s1 and s2 are

s1(u1,u2) =
2

∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

e j(2π
∆

p1u1+p2
4π
∆

u2)

and

s2(u1,u2) =
2

∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

e− j(3π
2 p1+π p2)e j(2π

∆
p1u1+p2

4π
∆

u2)

[30%]
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(ii) The frequency shift theorem enables us to write the Fourier transform of a
signal sampled on a rectangular grid (centred on origin, and sampled at ∆1, ∆2) as

Gs(ω1,ω2) =
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G(ω1− p1Ω1,ω2− p2Ω2)

Thus for our case Gs(ω1,ω2) takes the form

Gs(ω1,ω2)=
2

∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G
(

ω1−
[

2π

∆

]
p1,ω2−

[
4π

∆

]
p2

)
[1+e− j(3π

2 p1+π p2)]

so that

f (∆) =
2

∆2

β1 =
2π

∆

β2 =
4π

∆

W = e− j(3π
2 p1+π p2)

[20%]

(b) (i) Perception of images is very much concerned with lines and edges. It can
be shown that if we discard the amplitude information present in the 2D FT of
an image, we can still reconstruct a recognisable image due to the fact that edge
information is retained in the phases of the FT.
If a filter phase response is non-linear, then the various frequency components which
contribute to an edge in an image will be phase-shifted with respect to each other
in such a way that they no longer add up to produce a sharp edge – i.e. dispersion
takes place. It is often simplest to enforce the zero-phase condition, i.e. insisting
that the frequency response is purely real, so that

H(ω1,ω2) = H∗(ω1,ω2)

Thus, ensuring that our filters are zero-phase will ensure that we preserve edges –
crucial for image recognition. [15%]

(ii) Can first of all do this via straightforward FTs. Firstly we can write the
frequency response as

H(ω1,ω2) = H0−H1H2
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where

H0(ω1,ω2) =

1 if |ω1|< ΩU1 and |ω2|< ΩU2

0 otherwise

H1(ω1,ω2) =

1 if ΩL1 < |ω1|< ΩU1

0 otherwise

H2(ω1,ω2) =

1 if ΩL2 < |ω2|< ΩU2

0 otherwise

Taking the IFT of H(ω1,ω2) gives us

h(n1,n2) =
∆1∆2
(2π)2

∫
π/∆2

−π/∆2

∫
π/∆1

−π/∆1
[H0−H1H2]e

j(ω1n1∆1+ω2n2∆2) dω1 dω2

=
∆1∆2
(2π)2

∫
ΩU2

−ΩU2

∫
ΩU1

−ΩU1
e j(ω1n1∆1+ω2n2∆2) dω2 dω1

− ∆1∆2

(2π)2

[∫ −ΩL1

−ΩU1

e jω1n1∆1dω1 +
∫

ΩU1

ΩL1

e jω1n1∆1dω1

][∫ −ΩL2

−ΩU2

e jω2n2∆2dω2 +
∫

ΩU2

ΩL2

e jω2n2∆2dω2

]

Evaluating these integrals gives

∆1∆2
(2π)2


[

e jω1n1∆1

jn1∆1

]ΩU1

−ΩU1

[
e jω2n2∆2

jn2∆2

]ΩU2

−ΩU2


− ∆1∆2
(2π)2


[e jω1n1∆1

jn1∆1

]−ΩL1

−ΩU1

+

[
e jω1n1∆1

jn1∆1

]ΩU1

ΩL1

[e jω2n2∆2

jn2∆2

]−ΩL2

−ΩU2

+

[
e jω2n2∆2

jn2∆2

]ΩU2

ΩL2


=

∆1∆2
(2π)2 {2ΩU12ΩU2sinc(n1∆1ΩU1)sinc(n2∆2ΩU2)}

− ∆1∆2

(2π)2 {[2ΩU1sinc(n1∆1ΩU1)−2ΩL1sinc(n1∆1ΩL1)] [2ΩU2sinc(n2∆2ΩU2)−2ΩL2sinc(n2∆2ΩL2)]}

=
∆1∆2
(π)2 {ΩU1ΩL2sinc(n1∆1ΩU1)sinc(n2∆2ΩL2)+

ΩL1ΩU2sinc(n1∆1ΩL1)sinc(n2∆2ΩU2)−ΩL1ΩL2sinc(n1∆1ΩL1)sinc(n2∆2ΩL2)}
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It is also possible to arrive at the above by using standard results for a rectangular
lowpass and bandpass filters.
Standard result for a lowpass filter (H0) is:

h(n1∆1,n2∆2) =
∆1∆2

π2 [ΩU2 ΩU1 sinc(ΩU2n2∆2)sinc(ΩU1n1∆1)]

Standard result for a separable bandpass filter (H1H2) is

h(n1∆1,n2∆2) =

∆1∆2
π2 [ΩU1sinc(ΩU1n1∆1)−ΩL1sinc(ΩL1n1∆1)] [ΩU2sinc(ΩU2n2∆2)−ΩL2sinc(ΩL2n2∆2)]

As well as taking (H0−H1H2) we can also treat the shaded region as the sum of
lowpass filters (|ω1| < ΩU1 and |ω2| < ΩL2, |ω1| < ΩL1 and |ω2| < ΩU2) minus
another lowpass filter (|ω1|< ΩL1 and |ω2|< ΩL2.

[35%]
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2 (a) (i) An expression relating the true image to the observed image in the
continuous case is

y(u1,u2) =
∫ ∫

h(v1,v2)x(u1− v1,u2− v2)dv1dv2 +d(u1,u2) (1)

where h(v1,v2) is the point-spread function of the distorting system (if the distortion
is assumed linear).
We can then write this equation in discrete form as

y(n1,n2) = ∑
m1

∑
m2

h(m1,m2)x(n1−m1,n2−m2)+d(n1,n2)

[5%]

(ii) If we then neglect the noise in the equation of part (i), we are left with

y(n1,n2) = ∑
m1

∑
m2

h(m1,m2)x(n1−m1,n2−m2)

Since the relationship between x and y is a 2-D convolution, a straightforward
approach to the problem of reconstruction is to take the Fourier transform of each
side of the above to give:

Y (ω1,ω2) = H(ω1,ω2)X(ω1,ω2)

where: H(ω1,ω2) = ∑
∞
n2=−∞ ∑

∞
n1=−∞ h(n1,n2)e− j(ω1n1+ω2n2)

∴X(ω1,ω2)=
Y (ω1,ω2)

H(ω1,ω2)
and x(n1,n2)=

1
(2π)2

∫
π

−π

∫
π

−π

X(ω1,ω2)e
j(ω1n1+ω2n2)dω1dω2

Thus, if we neglect noise and know the psf, h, we can estimate our true image by
a process known as inverse filtering, which, as we see above, involves dividing the
fourier transform of the observed image by the fourier transform of h – the inverse
filter is therefore 1/H.

[10%]

(iii) If the transfer function H(ω1,ω2) has zeros then the inverse filter, 1/H, will
have infinite gain. i.e. when H(ω1,ω2) is very small, 1/H(ω1,ω2) is very large and
therefore, small noise in the regions of the frequency plane where 1/H(ω1,ω2) is
very large, can be hugely amplified. In practice a method of lessening this sensitivity
to noise is to threshold the frequency response, leading to the so-called, pseudo-
inverse or generalised inverse filter Hg(ω1,ω2). This is given by
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Hg(ω1,ω2) =


1

H(ω1,ω2)
1

|H(ω1,ω2|
< γ

0 otherwise
(2)

or

Hg(ω1,ω2) =


1

H(ω1,ω2)
1

|H(ω1,ω2|
< γ

γ
|H(ω1,ω2|
H(ω1,ω2)

otherwise
(3)

Clearly for 1
|H(ω1,ω2|

≥ γ in equation 3, the modulus of the filter is set as γ , whereas
in equation 2 it is set as 0.

[5%]

(iv) Our observed image, y, the original image, x, the linear distortion L, and the
noise d, are related by

y(n) = Lx(n)+d(n)

Writing this equation in vector form – i.e. we write x for the vector of original
image values etc.

y = Lx+d

For simplicity we assume that E[x] = 0 and E[d] = 0, i.e. that both the signal
and the noise are zero mean. To find an estimate of x, we maximise P(x|y), i.e.
the probability of the original image given the observed data. When dealing with
conditional probabilities we use Bayes’ Theorem:

P(x|y) = 1
P(y)

P(y|x)P(x) (4)

at the simplest level we regard P(y), the probability of the data, simply as a
normalising factor, which therefore implies that we wish to maximise

P(x|y) ∝ P(y|x)P(x) (5)

If we assume that the noise is gaussian distributed we can write the probability of
the noise, which is proportional to the likelihood as

P(y|x) ∝ e−
1
2 dT N−1d = e−

1
2 (y−Lx)T N−1(y−Lx)

where N = E[ddT ] is the noise covariance matrix. The dT N−1d term is the vector
equivalent of the 1

σ
term in the 1d gaussian – if N is diagonal then N−1 will be

diagonal with elements 1
σi

.
We now have to decide on the assignment of the prior probability P(x) – this
probability incorporates any prior knowledge we may have about the distribution
of the data.
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Assume first an ideal world in which x is a gaussian random variable, described by
a known covariance matrix C = E[xxT ] (including all cross-correlations etc.) so that

P(x) ∝ e−
1
2xTC−1x

Thus we can now write the posterior probability as

P(x|y) ∝ P(y|x)P(x) ∝ e−
1
2 [(y−Lx)T N−1(y−Lx)+xTC−1x] (6)

which one must maximise wrt x to obtain the reconstruction.
[30%]

(b) (i) The histogram of the image is shown below. We can see that the grey levels
used are concentrated around the upper end of the range 1-9.

0 1 2 3 4 5 6 7 8 9

2
4
6
8

10

[10%]

(ii) It often helps to draw up a table when performing histogram equalisation:
below let H(i) be the frequency values and C(i) be the cumulative frequency values

i 1 2 3 4 5 6 7 8 9
H(i) 0 0 0 0 0 8 10 10 8
C(i) 0 0 0 0 0 8 18 28 36

The transformed levels are given by

yk =
k

∑
i=1

L
Ni

NM
, k = 1...9

where N×M are the dimensions of the image, Ni is the number of pixels in grey
level i (equivalent to H(i) above) and L is the range in grey level space. Therefore,
L = 9, NM = 36 and

yk =
L

NM

k

∑
i=1

Ni =
1
4

k

∑
i=1

Ni =
1
4

C(k), k = 1...9

We can now add an extra line to our table to show the transformed values:
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i 1 2 3 4 5 6 7 8 9
H(i) 0 0 0 0 0 8 10 10 8
C(i) 0 0 0 0 0 8 18 28 36
y(i) 0 0 0 0 0 2 4.5 7 9

From this table it is now easy to draw the new image and sketch the new histogram
(round up the 4.5 value to 5)

2 2 5 7 9 9
2 2 5 7 9 9
5 5 5 7 7 7
7 7 7 5 5 5
9 9 7 5 2 2
9 9 7 5 2 2

Fig. 1

0 1 2 3 4 5 6 7 8 9

2
4
6
8

10

The process has succeeded in spreading out the grey levels more evenly across the
scale but the distribution is far from being uniform. The discreteness of the problem
means that the equalisation process tries to do the best job it can according to the
rules prescribed. This could now be improved by interpolation.

[30%]

(iii) The original image is effectively two peaks – in the top right and bottom left
corners, but the difference between these peaks and the intervening ‘valley’ is not
pronounced. With the new histogram equalised image, the contrast between the
peaks and the separating valley is much more pronounced.

[10%]
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3 (a) Orthogonality: First consider

t1 · tk =

√
2

n

n

∑
i=1

cos
(

π(2i−1)(k−1)
2n

)
for 2≤ k ≤ n.

The angles π(2i−1)(k−1)
2n correspond to the centres of n sectors, uniformly spaced around

the unit circle, covering the range 0 to (k−1)π .

Hence the cos terms are proportional to the projections of the sector centres of gravity
onto the real axis. From symmetry considerations, these projections onto the real axis
will sum to zero (pairs will cancel out) for all integer (k−1) as long as (k−1) is non-zero
and not an integer multiple of 2n.

For example, these sectors are shown here for k = 2 and n = 6:

Fig. 2

Other proofs are possible, but are less intuitive.

Now consider the inner product of rows excluding the first:

tl · tk =
2
n

n

∑
i=1

cos
(

π(2i−1)(l−1)
2n

)
cos
(

π(2i−1)(k−1)
2n

)
We can expand each term as the sum of two cosines (cos(A+B), cos(A−B)). As long as
(l + k−2) is not zero and not a multiple of 2n, the first sum will be zero.

As long as (l− k) is not zero and not a multiple of 2n, the second sum will be zero.

But l and k only go from 2 to n, and l 6= k, so all rows are orthogonal.

Orthonormality:

∑
n
i=1 t2

1i = n.1n = 1, therefore row 1 is normalised (has unit magnitude).

Also
n

∑
i=1

t2
ki =

2
n

n

∑
i=1

cos2
(

π(2i−1)(k−1)
2n

)
=

1
n

n

∑
i=1

[
1+ cos

(
2π(2i−1)(k−1)

2n

)]

= n.
1
n
+0 = 1
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which tells us that rows 2 to n are also normalised.

Because each row of T times any other row of T sums to zero, and each row times itself
sums to 1, we have T T T = I, which tells us that T T = T−1 so that T T T = T T−1 = I [20%]

(b) The energy of X is the sum of squares of all elements of X , and similarly for Y .
Consider z = T x, where z and x are n-element column vectors from Z and X .

The energy of Z is zT z = xT T T T x = xT x, which therefore equals the energy of X .

Therefore, if Z = T X , where Z and X are n×n matrices, then the energy of Z is equal to
the energy of X .

Similarly, if Y = ZT T , we also find that the energy of Y is equal to the energy of Z, since
row energies of Z are preserved in Y .

Therefore Energy of X = Energy of Y . [15%]

(c) For the 16 subimages, i= 1...4 and j = 1...4, and so we have the following energies,
where α is a constant of proportionality, ie we assume that Ei j = α/(i+ j−1)2:

(i, j) energy per subimage
(1,1) α

(1,2),(2,1) α/4
(1,3),(2,2),(3,1) α/9
(1,4),(2,3),(3,2),(4,1) α/16
(2,4),(3,3),(4,2) α/25
(3,4),(4,3) α/36
(4,4) α/49

Total energy is therefore:

=α+
2α

4
+

3α

9
+

4α

16
+

3α

25
+

2α

36
+

α

49
=α

[
1+

2
4
+

3
9
+

4
16

+
3

25
+

2
36

+
1

49

]
= 2.2793α

Since energy is preserved in Y , 2.2793α = σ2, so α = 0.4387σ2.

Hence the energies per coefficient of the 7 types of subband above are

0.4387σ
2, 0.1097σ

2, 0.0487σ
2, 0.0274σ

2, 0.0175σ
2, 0.0122σ

2, 0.0090σ
2,

[30%]

(d) Using the given formula for entropy and Q = σ/2, we get

Page 11 of 16 BAD PAGEBREAK



Version JL/2

Hi j =
1
2

log2

(
1+
[

20
σ2/4

]
Ei j

)
where the Ei j are the values from part (c). Hence the 7 distinct Hi js are given by

H11 2.5869 bit
H12 = H21 1.6445 bit
H13 = H22 = H31 1.1464 bit
H14 = H23 = H33 = H41 0.8376 bit
H24 = H33 = H42 0.6327 bit
H34 = H43 0.4909 bit
H44 0.3896 bit

Each subband is of size 3072
4 ×

2048
4 = 768×512 = 393,216 coefficients.

Therefore, the total number of bits needed to code the image is

= 393216[H11+2H12+3H13+4H14+3H24+2H34+H44] = 393216×15.9351= 6.266×106 bits

. [20%]

(e) In JPEG XR, the 4× 4 DCTs on the pixels are followed by a second level of
DCTs which are applied just to the subimage of the DC coefficients, Y11. The other
15 subimages, Y12, ....,Y44, are left as they are from the level 1 DCTs. This gives good
compression of the low frequency components of the image where the main energy is
concentrated, since the 16 subimages from the level 2 DCT are approximately equivalent
to the top-left 16 subimages of a single 16×16 point DCT system.

However JPEG XR avoids the main disadvantage of a 16 × 16 DCT, because the
‘blockiness’ is mainly confined to the 4× 4 pixel blocks from level 1, rather than the
16×16 pixel blocks from level 2. Hence the blockiness is less visible in JPEG XR than
either 8×8 JPEG or a 16×16 transform.

[15%]
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4 (a) See Figure 3, where the left hand side is the Analysis filter bank and the right
hand side is the Reconstruction filter bank.

Fig. 3

H0(z) and G0(z) are lowpass filters and H1 and G1 are highpass filters.

Perfect Reconstruction means that we require that the reconstructed signal X̂(z) is
identical to the input signal X(z).

[20%]

(b) the figures below show the 2-level wavelet transforms for 1D signals and 2D signals;

Fig. 4

Fig. 5
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For 2D filtering, the lowpass and highpass filters (H0 and H1) are applied first to the rows
of the input image x, and then to the columns of the resulting pair of subimages, to give
4 subimages, y00, ...,y11, each one being one quarter of the size of the input image. Then
the Lo-Lo subimage, y00, is passed through a second level of filters in each direction.

[20%]

(c) Separable filters are much more efficient to compute than non-separable filters. If
the 1D filters are of length k, then the level 1 row convolutions require a total of Nk
multiply-and-add operations, where N is the number of pixels in the image. Similarly the
level 1 column convolutions also require Nk operations (Nk/4 for each output subimage).
So level 1 requires 2Nk operations in total.

If instead we used 4 separate 2D filters each of area k× k coefficients, then this would
require Nk2 operations in total (Nk2/4 for each output subimage).

Hence using two 1D filtering processes require 2Nk
Nk2 = 2

k times as much computation as a
single 2D filtering process for each subimage, which provides a useful saving when k is
around 10 to 20.

Level 2 wavelet subimages are only 1/4 the size of level 1 subimages, so only 1/4 of the
computation is needed at level 2. Similarly, only 1/16 of the computation of level 1 is
needed at level 3 etc. So the total computation for a wavelet transform of many layers is

2Nk(1+1/4+1/16+1/64+ ...)< 2Nk
4
3

Since ∑
∞
n=1

1
n2 = 4/3.

This is therefore very efficient and linear in N. [20%]

(d) Substituting the expressions for H1 and G1 in to the P-R equation gives

G0(z)H0(z)+H0(−z)G0(−z) = 2

or

P(z)+P(−z) = 2

where P(z) = H0(z)G0(z). If P(z) is a polynomial, the PR conditions therefore requires
all terms in even powers of z to be zero (except the z0 term which should be 1).

When z is replaced by −z in Z = 1
2(z+ z−1) we get 1

2(−z+−z−1) = −Z. Note that
odd powers of Z produce only odd powers of z, and even powers of Z produce only even
powers of z – essential for the PR conditions. By writing the PR equation in terms of Z
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instead of z we are able to more easily solve a polynomial equation (no negative powers)
in terms of Z.

Here the P-R equation, in terms of Z becomes:

(1+Z)(1+aZ)(1+Z)+(1−Z)(1−aZ)(1−Z) = 2

Now

(1+Z)2(1+aZ) = (1+2Z +Z2)(1+aZ) = 1+(2+a)Z +(1+2a)Z2 +aZ3

When Z is replaced by −Z, the odd-order terms get negated, and therefore cancel out in
the P-R equation, which then simplifies to

2[1+(1+2a)Z2] = 2

So that (1+2a) = 0 and a =−1/2. [20%]

(e) When z =−1, Z = (1/2)(z+ z−1) =−1 also. Hence each factor (1+Z) produces
2 zeros at z =−1, because

1+Z =
1
2
(z+2+ z−1) =

1
2

z−1(z+1)2

.

If we want more zeros in Z at z =−1, for each factor of (1+Z) in the transformed filters,
then we need a higher-order substitution for Z. In order that odd powers of Z produce only
odd powers of z in the filter (to satisfy the P-R condition) the next higher order subsitution
for Z that is symmetric about z0 is

Z = pz3 +(1/2− p)(z+ z−1)+ pz−3

where p is a design parameter that can be chosen to put as many zeros as possible
(typically 4) at z =−1, when Z =−1. [20%]

END OF PAPER
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