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1 (a) Windowing methods:

(i) The two most popular methods of forming 2D windows from 1D windows are

A. Taking the product of 1D windows:

𝑤(𝑢1, 𝑢2) = 𝑤1(𝑢1) 𝑤2(𝑢2)

B. Rotating a 1D window:

𝑤(𝑢1, 𝑢2) = 𝑤1(𝑢) |
𝑢=

√︃
(𝑢2

1+𝑢
2
2)

Taking the inverse FT of the ideal frequency response will give an impulse response
which does not have finite support – to remedy this we multiply by a window function
which forces the impulse response coefficients to zero for (𝑛1, 𝑛2) outside 𝑅ℎ, the
desired support region. The actual filter frequency response 𝐻 (𝜔1, 𝜔2) is then given
by the convolution of the desired frequency response 𝐻𝑑 (𝜔1, 𝜔2) with the window
function spectrum 𝑊 (𝜔1, 𝜔2).

This is exactly as we should expect since we multiply in the spatial domain and must
therefore convolve in the frequency domain.

Thus the effect of the window is to smooth 𝐻𝑑 . [15%]

(ii) This is a product window. The cos2 compared to the cos is shown in figure ??
(left) for 𝑈1 = 𝜋/2. The window is then (again for 𝑈1 = 𝑈2 = 𝜋/2) shown in
figure ?? (right). Anything which approximates this will be OK. [10%]

Fig. 1 Fig. 2

(iii) We can see that this is a sinc function with its zeros (which delineate the
sidelobes) at 𝑈𝜔 = ±𝑛𝜋, 𝑛 = 1, 2, ... – however, the denominator ensures that the
amplitude falls off quickly as 𝜔 increases. For 𝑈 = 1 the Fourier transform (right)
is sketched in figure ??, with the numerator and demominator also sketched (left). [20%]
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Fig. 3

We can see from the figure that there are no significant sidelobes after the first, and
hence there will be minimal disturbance from sidelobe artefacts. however, the width
of the main lobe is reasonably wide, but better than that produced by a rectangular
window and a raised cosine window.

(b) Image deconvolution:

(i) Take the Fourier transform of each side of the convolution equation,
disregarding the noise (assuming it is negligible) to give:

𝑌 (𝜔1, 𝜔2) = 𝐻 (𝜔1, 𝜔2)𝑋 (𝜔1, 𝜔2)

∴ 𝑋 (𝜔1, 𝜔2) =
𝑌 (𝜔1, 𝜔2)
𝐻 (𝜔1, 𝜔2)

Now, if 𝐻 (𝜔1, 𝜔2) has zeros, then the inverse filter, 1/𝐻, will have infinite gain. i.e.
if 1/𝐻 is very large (or indeed infinite), small noise in the regions of the frequency
plane where these large values of 1/𝐻 occur can be hugely amplified. To counter this
we can threshold the frequency response, leading to the so-called, pseudo-inverse
or generalised inverse filter 𝐻𝑔 (𝜔1, 𝜔2) given by

𝐻𝑔 (𝜔1, 𝜔2) =


1
𝐻 (𝜔1,𝜔2)

1
|𝐻 (𝜔1,𝜔2 |

< 𝛾

0 otherwise
(1)

or

𝐻𝑔 (𝜔1, 𝜔2) =


1
𝐻 (𝜔1,𝜔2)

1
|𝐻 (𝜔1,𝜔2 |

< 𝛾

𝛾
|𝐻 (𝜔1,𝜔2 |
𝐻 (𝜔1,𝜔2)

otherwise
(2)
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Clearly for 1
|𝐻 (𝜔1,𝜔2 |

≥ 𝛾 in equation ??, the modulus of the filter is set as 𝛾,
whereas in previous equation it is set as 0.
Although the generalised inverse filter may perform reasonably well on noiseless
images, the performance is unsatisfactory with even mildly noisy images due to the
still significant noise gain at frequencies where 𝐻 (𝜔1, 𝜔2) is relatively small. [15%]

(ii) As in the previous part, 𝐻 (𝜔) is the FT of the psf, 𝑃𝑥𝑥 is the power spectrum
(FT of the autocorrelation) of the original image. 𝑃𝑑𝑑 is the power spectrum of the
noise. If 𝑃𝑑𝑑 is not known, we might reasonably estimate it by isolating a portion
of the image that we believe contains only noise (recall our model is that the noise
is additive) and forming 𝑃𝑑𝑑 from that region – we then make the assumption (not
necessarily correct) that this then holds for the whole of the image.
Estimating the power spectrum of the original signal is not such a simple matter;
one method would be as follows: assume we have estimated 𝑃𝑑𝑑 .

𝑦(n) = 𝐿𝑥(n) + 𝑑 (n)

then taking FTs gives
𝑌 (𝝎) = 𝐻 (𝝎)𝑋 (𝝎) + 𝐷 (𝝎)

where 𝐻 = 𝐹𝑇 (𝐿). Thus, if we have an estimate of 𝐷, we can estimate 𝑌 − 𝐷 to
be approximately the FT of the signal. Or, if our blurring function is known we can
obtain a better estimate of 𝑋 by pseudo-inverse filtering, i.e.

𝑋 (𝝎) = 𝑌 (𝝎) − 𝐷 (𝝎)
𝐻𝑔 (𝝎)

where 𝐻𝑔 is the pseudo-inverse filter formed from 𝐻. [15%]

(iii) The matrix form of the Wiener filter is given by:

𝑊 = (𝐶−1 + 𝐿𝑇𝑁−1𝐿)−1𝐿𝑇𝑁−1

Where 𝐶 = 𝐸 (xxT) (corresponding to 𝑃𝑥𝑥), 𝑁 = 𝐸 (ddT) (corresponding to 𝑃𝑑𝑑)
and 𝐿 is of course the distortion (corresponding to 𝐻). [20%]

(iv) Notice how, in our expression for 𝑊 , if the 𝐶−1 were not present in
𝑊 we would just have 𝑊 = 𝐿−1 [since with no 𝐶−1 we can write 𝑊 =

(𝐿𝑇𝑁−1𝐿)−1(𝐿𝑇𝑁−1𝐿)𝐿−1 = 𝐿−1]
We say we have regularized the inverse; effectively we have added on another term
in order to avoid singularities. [5%]
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2 (a) Sampling on grids:

(i) The Fourier transform of the sampled signal is given by:

𝐺𝑠 (𝜔1, 𝜔2) =
1

Δ1 Δ2

∞∑︁
𝑝1=−∞

∞∑︁
𝑝2=−∞

𝐺 (𝜔1 − 𝑝1Ω1, 𝜔2 − 𝑝2Ω2)

It can therefore be seen that the Fourier transform or spectrum of the sampled
2D signal is the periodic repetition of the spectrum of the unsampled 2D signal
– precisely analogous to aliasing in the 1D case. It is therefore clear that for a
bandlimited 2D signal, we must sample at more than twice the largest frequencies
in the signal to keep these copies of the FT separate. Hence

2𝜋
Δ1

> 2Ω𝐵1
2𝜋
Δ2

> 2Ω𝐵2

These are the Nyquist frequencies, and if we sample below these we observe aliasing
artefacts. [15%]

(ii) The signal 𝑔(𝑢1, 𝑢2) is sampled on the non-standard hexagonal lattice shown
in figure ??, to produce a sampled signal, 𝑔𝑠 (𝑢1, 𝑢2).

Fig. 4

Consider this array as the sum of two sampling functions, 𝑠1 for the □ array, and 𝑠2
for the

⊙
array.
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By inspection, the sampling function, 𝑠1, for the □ array is given by

𝑠1(𝑢1, 𝑢2) =
∞∑︁

𝑛1=−∞

∞∑︁
𝑛2=−∞

𝛿(𝑢1 − 𝑛1Δ1, 𝑢2 − 𝑛2Δ2)

where Δ1 = 2𝑑 and Δ2 =
√

3𝑑.
Similarly, the sampling function, 𝑠2, for the

⊙
array can be seen to be

𝑠2(𝑢1, 𝑢2) =
∞∑︁

𝑛1=−∞

∞∑︁
𝑛2=−∞

𝛿(𝑢1 − [𝑛1 + 1
2 ]Δ̃1, 𝑢2 − [𝑛2 + 1

2 ]Δ̃2)

where Δ̃1 = 𝑑 and Δ̃2 =
√

3𝑑.
We can now use our result in the previous part to produce the FT of a signal sampled
on this grid as the sum of the FT on a rectangular grid and the FT on a shifted
rectangular grid:

𝐺𝑠 (𝜔1, 𝜔2) =
1

Δ1 Δ2

∞∑︁
𝑝1=−∞

∞∑︁
𝑝2=−∞

𝐺 (𝜔1 − 𝑝1Ω1, 𝜔2 − 𝑝2Ω2) + (3)

1
Δ̃1 Δ̃2

∞∑︁
𝑝1=−∞

∞∑︁
𝑝2=−∞

𝐺

(
𝜔1 − 𝑝1Ω

′
1, 𝜔2 − 𝑝2Ω

′
2

)
e− 𝑗 (𝑝1Ω

′
1`1+𝑝2Ω

′
2`2)

Where Ω1 = 2𝜋
Δ1

and Ω2 = 2𝜋
Δ2

and Ω′
1 = 2𝜋

Δ̃1
and Ω′

2 = 2𝜋
Δ̃2

. The shift parameters are

`1 = 𝑑/2 and `2 = 1
√

3𝑑/2. So that the exponential term becomes e− 𝑗 (𝑝1𝜋+𝑝2𝜋) .
Combining these (noting that the shifted FT can be written in terms of even and odd
𝑝1) we have

𝐺𝑠 (𝜔1, 𝜔2) =
1

2
√

3𝑑2

∞∑︁
𝑝1=−∞

∞∑︁
𝑝2=−∞

𝐺

(
𝜔1 − 𝑝1

𝜋

𝑑
, 𝜔2 − 𝑝2

2𝜋
√

3𝑑

)
[1+2𝛽e− 𝑗 (𝑝1/2+𝑝2)𝜋]

where 𝛽 = 0 if 𝑝1 is odd and 𝛽 = 1 if 𝑝1 is even. [30%]

(b) Amplitude and Phase in image Fourier transforms:

(i) Perception of images is very much concerned with lines and edges. It can be
shown that if we discard the amplitude information present in the 2D FT of an image,
we can still reconstruct a recognisable image due to the fact that edge information is
retained in the phases of the FT.
If a filter phase response is non-linear, then the various frequency components which
contribute to an edge in an image will be phase-shifted with respect to each other in
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such a way that they no longer add up to produce a sharp edge – i.e. dispersion takes
place. It is often simplest to enforce the zero-phase condition, i.e. insisting that the
frequency response is purely real, so that

𝐻 (𝜔1, 𝜔2) = 𝐻∗(𝜔1, 𝜔2)

Thus, ensuring that our filters are zero-phase will ensure that we preserve edges –
crucial for image recognition. [10%]

𝑢1

𝑢2

Fig. 5

(ii) ie 𝑔 in the 4 quadrants of the image plane we see that it takes the following
form:

𝑔(𝑢1, 𝑢2) =



+1 if 𝑢1 < 0 and 𝑢2 < 0

+1 if 𝑢1 ≥ 0 and 𝑢2 ≥ 0

−1 if 𝑢1 < 0 and 𝑢2 ≥ 0

−1 if 𝑢1 ≥ 0 and 𝑢2 < 0

Thus we have a ‘checkerboard’ corner, which displays edges along the 𝑢1 and 𝑢2
axes.
Now form the 2D Fourier transform of 𝑔: using the result given, we see that this is
trivially:

𝐺 (𝜔1, 𝜔2) =
(

2
𝑗𝜔1

) (
2
𝑗𝜔2

)
=

−4
𝜔1𝜔2

[15%]

(iii) We can see that figure 1 is just a rotated version of the corner pattern above,
so that
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𝑔𝑟 (𝑢1, 𝑢2) = 𝑔(𝑢′1, 𝑢
′
2)

where 𝑢′1 and 𝑢′2 are the coordinates formed by rotating (𝑢1, 𝑢2) anticlockwise
through 90 degrees, ie u′ = 𝑅u, where 𝑅 is the matrix which performs this rotation.
Therefore we know that the FT of 𝑔𝑟 will be given by

𝐺𝑟 (𝜔1, 𝜔2) =
(

2
𝑗𝜔′

1

) (
2
𝑗𝜔′

2

)
=

−4
𝜔′

1𝜔
′
2

where 𝜔′
1 =

𝜔1+𝜔2√
2

and 𝜔′
2 =

−𝜔1+𝜔2√
2

. [20%]

(iv) From 𝐺𝑟 we can form a new function 𝐺
𝑝ℎ𝑎𝑠𝑒

𝑅
where we set all the amplitudes

to unity, thus preserving only the phase information. From the form of 𝐺𝑟 we can
see that

𝐺
𝑝ℎ𝑎𝑠𝑒
𝑟 (𝜔1, 𝜔2) =



exp( 𝑗𝜋) if 𝜔′
1 < 0 and 𝜔′

2 < 0

exp( 𝑗𝜋) if 𝜔′
1 ≥ 0 and 𝜔′

2 ≥ 0

exp( 𝑗0) if 𝜔′
1 < 0 and 𝜔′

2 ≥ 0

exp( 𝑗0) if 𝜔′
1 ≥ 0 and 𝜔′

2 < 0

𝐺
𝑝ℎ𝑎𝑠𝑒
𝑟 has essentially the same form as 𝑔𝑟 , so when we take the IFT we will find:

𝑔𝑝ℎ𝑎𝑠𝑒 ∝
1

𝑢′1𝑢
′
2

where 𝑢′1 =
𝑢1+𝑢2√

2
and 𝑢′2 =

−𝑢1+𝑢2√
2

.
As 𝑢′1 or 𝑢′2 tend to zero, this function spikes, so we are picking out the rotated axes,
which are indeed the edges in our image. [10%]
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3 (a) We first transform the columns of 𝑋 by multiplying on the left by 𝑇 and then
the rows of the resulting matrix by multiplying the the right by 𝑇T, ie

𝑌 = 𝑇𝑋𝑇T =

[
𝑎 + 𝑏 + 𝑐 + 𝑑 (𝑎 + 𝑐) − (𝑏 + 𝑑)

(𝑎 − 𝑐) + (𝑏 − 𝑑) (𝑎 − 𝑐) − (𝑏 − 𝑑)

]
These elements correspond to the following filtering processes:

Top L:𝑎 + 𝑏 + 𝑐 + 𝑑 = 4-point average or 2D lowpass (Lo-Lo) filter.

Top R:(𝑎 + 𝑐) − (𝑏 + 𝑑) ≡ (𝑎 − 𝑏) + (𝑐 − 𝑑) = Average horizontal gradient or horizontal
highpass and vertical lowpass (Hi-Lo) filter.

Lower L:(𝑎+𝑏) − (𝑐+𝑑) ≡ (𝑎−𝑐) + (𝑏−𝑑) = Average vertical gradient or horizontal lowpass
and vertical highpass (Lo-Hi) filter.

Lower R:(𝑎 − 𝑏) − (𝑐 − 𝑑) ≡ (𝑎 − 𝑐) − (𝑏 − 𝑑) = Diagonal curvature or 2D highpass (Hi-Hi)
filter.

[15%]

(b) From the form of 𝑇 we can see that 𝑇 = 𝑇T = 𝑇−1, it is thus an orthonormal
transformation such that 𝑇T𝑇 = 𝐼, where 𝐼 is the identity matrix. We see this using

(Energy of y) = y𝑇 y = x𝑇 T𝑇 T x = x𝑇 I x = x𝑇 x = (Energy of x)

To apply the first level Haar transform to an 𝑁 × 𝑁 image (assume 𝑁 eve), we split the
image into 2 × 2 blocks and apply 𝑇 to each block – then we rearrange the output so that
there are 4 blocks of 𝑁/2 × 𝑁/2 elements. The top LH block contains all the Lo-Lo
elements of each of the Haar transform of the 2 × 2 blocks; the top RH block contains
all the Hi-Lo elements; the bottom LH block is the collection of Lo-Hi elements and the
bottom RH block collects together all of the Hi-Hi elements.
To then apply a level-2 Haar transform, we take the top LH block, which contains the
lowpass components (and therefore contains the majority of the energy of the image) and
make a second application of the Haar transform. This process will result in 4 blocks of
𝑁/4 × 𝑁/4 and 3 blocks of 𝑁/2 × 𝑁/2.
If we apply the first level of the Haar transform, we obtain 4 Lo-Lo elements of each of
the 4 2 × 2 blocks – this lowpass block is given by :

𝑇1 =

[
𝑧11 + 𝑧12 + 𝑧21 + 𝑧22 𝑧13 + 𝑧14 + 𝑧23 + 𝑧24
𝑧31 + 𝑧32 + 𝑧41 + 𝑧42 𝑧33 + 𝑧34 + 𝑧43 + 𝑧44

]
Page 9 of ?? (TURN OVER
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Now the Haar transform is again applied to 𝑇1, and we know from above that the Hi-Lo
component is given by (𝑇111 + 𝑇121) − (𝑇112 + 𝑇122). In terms of the 𝑧s this becomes:

©«
𝑖, 𝑗=2∑︁
𝑖, 𝑗=1

𝑧𝑖 𝑗 +
𝑖=4∑︁
𝑖=3

𝑗=2∑︁
𝑗=1

𝑧𝑖 𝑗
ª®¬ − ©«

𝑖, 𝑗=4∑︁
𝑖, 𝑗=3

𝑧𝑖 𝑗 +
𝑗=4∑︁
𝑗=3

𝑖=2∑︁
𝑖=1

𝑧𝑖 𝑗
ª®¬

[25%]

(c) Entropy of source information for an image 𝑋 quantised to 𝑀 levels, is 𝐻𝑋 and is
defined as:

𝐻𝑋 =

𝑀−1∑︁
𝑖=0

𝑝𝑖 log2

(
1
𝑝𝑖

)
= −

𝑀−1∑︁
𝑖=0

𝑝𝑖 log2(𝑝𝑖)

where 𝑝𝑖, 𝑖 = 0 to 𝑀 − 1, is the probability of the 𝑖𝑡ℎ quantiser level being used (often
obtained from a histogram of the pixel intensities).

This is useful as it gives the minimum number of bits per pixel needed to represent the
quantised data for the image/subimage, to a given accuracy, assuming that we use an ideal
entropy code.
Figure ?? shows a typical distribution for both 𝑝𝑖 (probability=yellow) and ℎ𝑖 (entropy=
blue) for a natural image when the level 1 Haar transform is applied.
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[20%]

(d) 𝑇 is now the 8𝑥8 DCT – if we plug in the values we obtain the following shapes for
the rows of T

Note that rows 1,3,5,7 (odd rows) are all symmetric about the centre (between element
4 an 5), while rows 2,4,6,8 are all antisymmetric about the centre. This fact enables us
speed up the multiplication y = 𝑇x.

First we form: two new 4-element vectors, u, v, made up from the elements of the vector
x:

𝑢(𝑖) = 𝑥(𝑖) + 𝑥(9 − 𝑖) and 𝑣(𝑖) = 𝑥(𝑖) − 𝑥(9 − 𝑖) for 𝑖 = 1 → 4

and then form the odd and even terms in y from two 4 × 4 transforms:


𝑦(1)
𝑦(3)
𝑦(5)
𝑦(7)


= 𝑇left,odd u and


𝑦(2)
𝑦(4)
𝑦(6)
𝑦(8)


= 𝑇left,even v

where 𝑇left,odd and 𝑇left,even are the 4 × 4 matrices formed by the left halves of the odd
and even rows of 𝑇 .
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This reduces the computation to 8 add/subtract operations to form the 𝑢𝑖, 𝑣𝑖 and 2 × [42]
mults and 2 × [4 × 3] adds – giving 32 mults and 32 adds, almost halving the total
computation load.
Since 𝑇left,odd has the same symmetries as 𝑇 (ie is a 4-point DCT matrix) we can apply
this technique again and save even more computation. [25%]

(e) The 16 × 16 DCT is marginally better, in terms of entropy, than the 8 × 8 DCT.
However, subjectively this is not the case since quantisation artefacts become more visible
as the block size increases.
In practice, for a wide range of images and viewing conditions, 8× 8 has been found to be
a good DCT block size and is specified in many current coding standards (JPEG).
But, if we consider going to higher levels of the DCT, ie taking the top left subimage of
the DCT and applying a further DCT, then we can obtain improved compression without
loss of quality. For this reason, more recent standards (JPXR) use 2 levels of a 4× 4 DCT.
Of course, this means a slightly more complex pipeline. [15%]
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4 (a) (i) See Figure ??, where the left hand side is the Analysis filter bank and
the right hand side is the Reconstruction filter bank.

Fig. 6

𝐻0(𝑧) and 𝐺0(𝑧) are lowpass filters and 𝐻1 and 𝐺1 are highpass filters.
Perfect Reconstruction means that we require that the reconstructed signal �̂� (𝑧) is
identical to the input signal 𝑋 (𝑧), which is of course important so that no distortion
or loss takes place. [20%]

(ii) Consider the data samples 𝑦𝑛 with 𝑧-transform

𝑌 (𝑧) =
∞∑︁

𝑛=−∞
𝑦𝑛𝑧

−𝑛

If 𝑦𝑛 is downsampled by 2 and then upsampled by 2 to give �̂�𝑛, and if 𝑌 is the
𝑧-transform of {�̂�𝑛}, we have

�̂�𝑛 = 𝑦𝑛 for 𝑛 even �̂�𝑛 = 0 for 𝑛 odd

Taking the 𝑧-transform of �̂�𝑛 then gives

𝑌 (𝑧) =
∑︁

even 𝑛

𝑦𝑛𝑧
−𝑛

=
∑︁

all 𝑛

1
2

[
𝑦𝑛𝑧

−𝑛 + 𝑦𝑛 (−𝑧)−𝑛
]

=
1
2

∑︁
𝑛

𝑦𝑛𝑧
−𝑛 + 1

2

∑︁
𝑛

𝑦𝑛 (−𝑧)−𝑛

=
1
2
𝑌 (𝑧) + 1

2
𝑌 (−𝑧)

=
1
2
[𝑌 (𝑧) + 𝑌 (−𝑧)]
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[15%]

(iii) For the downsample-filter-upsample case, first downsample and convolve with
ℎ – let 𝑓 (𝑛) = 𝑥(2𝑛):∑︁

𝑖

𝑓 (𝑛 − 𝑖) ℎ(𝑖) =
∑︁
𝑖

𝑥(2(𝑛 − 𝑖)) ℎ(𝑖) =
∑︁
𝑖

𝑥(2𝑛 − 2𝑖) ℎ(𝑖)

Now upsample (fill in with zeros):

�̂�(𝑛) =
∑︁
𝑖

𝑥(𝑛 − 2𝑖) ℎ(𝑖) for 𝑛 even

= 0 for 𝑛 odd

Take z-transforms:

𝑌 (𝑧) =
∑︁
𝑛

�̂�(𝑛) 𝑧−𝑛 =
∑︁

even 𝑛

∑︁
𝑖

𝑥(𝑛 − 2𝑖) ℎ(𝑖) 𝑧−𝑛

Reverse the order of summation and let 𝑚 = 𝑛 − 2𝑖:

=⇒ 𝑌 (𝑧) =
∑︁
𝑖

ℎ(𝑖)
( ∑︁
even 𝑚

𝑥(𝑚) 𝑧−𝑚 𝑧−2𝑖

)
(4)

=

(∑︁
𝑖

ℎ(𝑖) 𝑧−2𝑖

) ( ∑︁
even 𝑚

𝑥(𝑚) 𝑧−𝑚
)

𝑌 (𝑧) = 𝐻 (𝑧2) 1
2
[𝑋 (𝑧) + 𝑋 (−𝑧)]

=
1
2
[𝐻 (𝑧2) 𝑋 (𝑧) + 𝐻 ((−𝑧)2) 𝑋 (−𝑧)]

=
1
2
[𝑌 (𝑧) + 𝑌 (−𝑧)] where 𝑌 (𝑧) = 𝐻 (𝑧2) 𝑋 (𝑧)

This describes the operations of filter-downsample-upsample.

In the first line above,

𝑌 (𝑧) = 1
2
[𝑋 (𝑧) + 𝑋 (−𝑧)] 𝐻 (𝑧2) = �̂� (𝑧) 𝐻 (𝑧2)

shows that the filter 𝐻 (𝑧2) may be placed after the down/up-sampler as in
downsample-upsample-filter, which proves the second result.
While this moving of the downsampler/upsamplers to the end of the chain is not
useful in practice, it is a very useful tool for analysis purposes. [25%]
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(b) (i) The sketches of typical 𝑌,𝑈,𝑉 histograms are shown in figure ??: [10%]

Fig. 7

(ii) The U and V components may be sampled at a lower rate than Y due to the
narrower bandwidth as shown typically in Figure ??. [5%]

(iii) The sketch below (figure ??) illustrates the sensitivity of the human eye by
plotting spatial frequency (freq of an alternating pattern of parallel stripes) against
number of perceivable levels (a measure of human contrast sensitivity).

Look particularly at the sensitivity of the U (blue-yellow) and V (red-green)
components: we see from Figure ?? that the maximum U sensitivity is about
1/6 that of the maximum Y sensitivity, and similarly the maximum V sensitivity is
about 1/3 that of Y. Because of this low contrast sensitivity, we can quantise U and
V more coarsely than Y. [10%]

(iv) 𝑌 =⇒ 768 × 1024 = 3 × 218 pixels.
𝑈,𝑉 =⇒ (768/2) × (1024/2) = 3 × 216 pixels.
ie downsample 𝑈,𝑉 by a factor of 2 in each dimension.
Therefore the number of bits required is approximated by the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦×𝑁𝑜.𝑝𝑖𝑥𝑒𝑙𝑠.
For 𝑌 : 1.2 × 3 × 218, for 𝑈,𝑉 : 3 × 2 × 0.5 × 1

4 × 218.
Therefore total number of bits required is : (1.2 + 0.25) × 3 × 218 = 4.35 × 218 =

1.14 × 106. [15%]
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Fig. 8

END OF PAPER
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