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ENGINEERING TRIPOS PART IIB: SOLUTIONS
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Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.
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CUED approved calculator allowed
Engineering Data Book
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the exam.
You may not start to read the questions printed on the subsequent
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1 (a) The 2D Fourier Transform is written as:

𝐹 (𝜔1, 𝜔2) =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑢1, 𝑢2) 𝑒− 𝑗 (𝜔1𝑢1+𝜔2𝑢2) 𝑑𝑢1 𝑑𝑢2

So, shifting by (𝑎, 𝑏) will give:

𝐹
′
(𝜔1, 𝜔2) =

∬ ∞

−∞
𝑓 (𝑢1 − 𝑎, 𝑢2 − 𝑏) 𝑒− 𝑗 (𝜔1𝑢1+𝜔2𝑢2) 𝑑𝑢1 𝑑𝑢2

Let 𝑢1 − 𝑎 = 𝑢
′
1 and 𝑢2 − 𝑏 = 𝑢

′
2

𝐹
′
(𝜔1, 𝜔2) =

∬ ∞

−∞
𝑓 (𝑢

′
1, 𝑢

′
2) 𝑒

− 𝑗 [(𝜔1 (𝑢
′
1+𝑎)+𝜔2 (𝑢

′
2+𝑏)] 𝑑𝑢

′
1 𝑑𝑢

′
2

= 𝑒− 𝑗 (𝑎𝜔1+𝑏𝜔2)
∬

𝑓 (𝑢
′
1, 𝑢

′
2) 𝑒

− 𝑗 (𝜔1𝑢
′
1+𝜔2𝑢

′
2) 𝑑𝑢

′
1 𝑑𝑢

′
2

= 𝑒− 𝑗 (𝑎𝜔1+𝑏𝜔2) 𝐹 (𝜔1, 𝜔2)

∴ 𝑓 (𝑢1 − 𝑎, 𝑢2 − 𝑏) ⇔ 𝑒− 𝑗 (𝑎𝜔1+𝑏𝜔2) 𝐹 (𝜔1, 𝜔2)

[15%]

(b) If we rotate our coordinate system as given (u′ = 𝑅u), the FT will be given by

𝐹
′
(𝜔1, 𝜔2) =

∬ ∞

−∞
𝑓 (𝑢1 cos 𝜙 + 𝑢2 sin 𝜙,−𝑢1 sin 𝜙 + 𝑢2 cos 𝜙) 𝑒− 𝑗 (𝜔1𝑢1+𝜔2𝑢2) 𝑑𝑢1 𝑑𝑢2

Now put 𝑢′1 = 𝑢1 cos 𝜙 + 𝑢2 sin 𝜙, 𝑢′2 = −𝑢1 sin 𝜙 + 𝑢2 cos 𝜙 noting that 𝑑𝑢′1 𝑑𝑢
′
2 =

|𝐽 |𝑑𝑢1 𝑑𝑢2, where the jacobian 𝐽 is 1 (as we simply have a rotation):

𝐹
′
(𝜔1, 𝜔2) =

∬ ∞

−∞
𝑓 (𝑢

′
1, 𝑢

′
2) 𝑒

− 𝑗 [𝜔1 (𝑢′1 cos 𝜙−𝑢′2 sin 𝜙)]
𝑒
− 𝑗 [𝜔2 (𝑢′1 sin 𝜙+𝑢′2 cos 𝜙)]

𝑑𝑢
′
1 𝑑𝑢

′
2

=

∬ ∞

−∞
𝑓 (𝑢1

′, 𝑢2
′) 𝑒− 𝑗 (𝜔′

1𝑢
′
1+𝜔

′
2𝑢

′
2)𝑑𝑢1

′ 𝑑𝑢2
′

since [𝑢1, 𝑢2]𝑇 = 𝑅𝑇 [𝑢′1, 𝑢
′
2]
𝑇 = [𝑢′1 cos 𝜙 − 𝑢′2 sin 𝜙, 𝑢′1 sin 𝜙 + 𝑢′2 cos 𝜙]𝑇 , and where

𝜔′
1 = 𝜔1 cos 𝜙 + 𝜔2 sin 𝜙, 𝜔′

2 = −𝜔1 sin 𝜙 + 𝜔2 cos 𝜙.
From this we see that this is just the rotated FT. The sense of the rotation is in the same
sense as the spatial plane rotation. [20%]
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(c) Take the FT of the line:

𝐹 (𝜔1, 𝜔2) =
∫ ∞

−∞

∫ ∞

−∞
𝛿(𝑢2) 𝑒− 𝑗 (𝜔1𝑢1+𝜔2𝑢2) 𝑑𝑢1 𝑑𝑢2 =

∫
𝑒− 𝑗𝜔1𝑢1𝑑𝑢1 = 2𝜋𝛿(𝜔1)

Telling us that the FT of horizontal line which is the 𝑢1-axis is the vertical line in the
fourier domain which is the 𝜔2 axis – the line and its FT are therefore at 90 degrees. [20%]

(d) As above, do the direct FT to give

𝐹 (𝜔1, 𝜔2) =
∫ ∞

−∞

∫ ∞

−∞
𝛿(𝑢2−[𝑚𝑢1+𝑐]) 𝑒− 𝑗 (𝜔1𝑢1+𝜔2𝑢2) 𝑑𝑢1 𝑑𝑢2 =

∫
𝑒− 𝑗𝜔1𝑢1 𝑒− 𝑗𝜔2 (𝑚𝑢1+𝑐)𝑑𝑢1

= 𝑒− 𝑗𝜔2𝑐
∫

𝑒− 𝑗 (𝜔1+𝑚𝜔2)𝑢1𝑑𝑢1 = 2𝜋𝑒− 𝑗𝜔2𝑐 𝛿(𝜔1 + 𝑚𝜔2)

Therefore, in the Fourier domain, we have a line through the origin, 𝜔2 = − 1
𝑚𝜔1, and a

phase factor, 𝑒− 𝑗𝜔2𝑐. The line in the fourier domain is at right angles to the line in the
spatial domain, and the phase factor gives us information about how the line through the
origin 𝑢2 = 𝑚𝑢1 is translated.
In the previous parts we found that the FT of the 𝑢1-axis was the 𝜔2 axis, ie 2𝜋𝛿(𝜔1). We
also saw that if we rotate in the spatial domain we rotate in the Fourier domain, and that a
shift in the spatial domain induces a phase factor in the Fourier domain. So, if we rotate
the 𝑢1-axis to the line 𝑢2 = 𝑚𝑢1, the FT will be

2𝜋𝛿(𝜔1 + 𝑚𝜔2)

ie we rotate so that in the Fourier domain our line is at 90 degrees. If we then translate a
distance 𝑐 in the spatial domain along the 𝑢2 axis, we pick up a factor of 𝑒− 𝑗𝜔2𝑐. Hence
we see how to obtain the result above via the answers to the previous parts. [20%]

(e) If we have a finite line (point pair) rather than an infinite line, this can be expressed as
the multiplication of the infinite line with a top hat function (1D) along the line. Therefore,
the FT of a finite line would be the convolution of the two FTS. ie, we would have the FT
of the line (a perpendicular line in the frequency plane) with a sinc oriented along the line.

[5%]

(f) The image in figure 1 is made up of 5 finite lines ..therefore the FT’s will be made
up of 5 lines through the origin (in the (𝜔1, 𝜔2) plane) convolved with a sinc (there will
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Fig. 1

be a phase factor which is difficult to display). The amplitude of the FT will therefore look
something like the image in figure 1

[20%]
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2 (a) Given the extent of the filter shown in Fig.2, we know that we are avoiding
aliasing. Following the question, we first of all use the form for the impulse response
(normalised freqs) for the alternative ideal bandpass filter:

ℎ(𝑛1, 𝑛2) =
1
(𝜋) [Ω𝑈1sinc(Ω𝑈1𝑛1) −Ω𝐿1sinc(Ω𝐿1𝑛1)]

1
(𝜋) [Ω𝑈2sinc(Ω𝑈2𝑛2) −Ω𝐿2sinc(Ω𝐿2𝑛2)]

Now put Ω𝐿1 = 0 and Ω𝐿2 = Ω and Ω𝑈1 = Ω𝑈2 = 2Ω in the above expression (and move
away from normalised freqs):

ℎ(𝑛1, 𝑛2) =
Δ1Δ2
(𝜋2)

[2Ωsinc(2Ω𝑛1Δ1)] [2Ωsinc(2Ω𝑛2Δ2) −Ωsinc(Ω𝑛2Δ2)]

Now check that the above result can be obtained via the subtraction of two lowpass filters.
First look at the impulse response of the ideal LP filter with Ω𝑈2 = Ω𝑈1 = 2Ω (and
Ω𝐿2 = Ω𝐿1 = 0):

ℎ1(𝑛1, 𝑛2) =
Δ1Δ2
(𝜋2)

[4Ω2sinc(2Ω𝑛2Δ2)sinc(2Ω𝑛1Δ1)]

Now look at the impulse response of the ideal LP filter with Ω𝑈2 = Ω,Ω𝑈1 = 2Ω (and
Ω𝐿2 = Ω𝐿1 = 0):

ℎ2(𝑛1, 𝑛2) =
Δ1Δ2
(𝜋2)

[2Ω2sinc(Ω𝑛2Δ2)sinc(2Ω𝑛1Δ1)]

From the above expressions, it is clear that ℎ = ℎ1 − ℎ2, as required. [25%]

(b) (i) Here, our distortion 𝐿 can be modelled by convolving with a psf ℎ. Suppose
we firstly ignore the noise 𝑑.

𝑦(𝑛1, 𝑛2) ≈
∑︁
𝑚1

∑︁
𝑚2

ℎ(𝑚1, 𝑚2)𝑥(𝑛1 − 𝑚1, 𝑛2 − 𝑚2)

𝑥 and𝑦 are convolved =⇒ take the Fourier transform of each side of the above to
give:

𝑌 (𝜔1, 𝜔2) = 𝐻 (𝜔1, 𝜔2)𝑋 (𝜔1, 𝜔2)

where: 𝐻 (𝜔1, 𝜔2) =
∑∞
𝑛2=−∞

∑∞
𝑛1=−∞ ℎ(𝑛1, 𝑛2)𝑒− 𝑗 (𝜔1𝑛1+𝜔2𝑛2)

∴ 𝑋 (𝜔1, 𝜔2) =
𝑌 (𝜔1, 𝜔2)
𝐻 (𝜔1, 𝜔2)
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the inverse filter is therefore 1/𝐻. If 𝐻 has zeros then we encounter significant
problems – can get around some of these using the generalised inverse filters. [15%]

(ii) In the MaxEnt method the prior is given by:

𝑃𝑟 (x) ∝ e𝛼𝑆

where the cross entropy 𝑆 of the image is given by

𝑆(x,m) =
∑︁
𝑖

[
𝑥𝑖 − 𝑚𝑖 − 𝑥𝑖 ln

(
𝑥𝑖

𝑚𝑖

)]
where m is the measure on an image space (the model) to which the image x defaults
in the absence of data. To see that the global maximum of 𝑆 occurs at x = m,
differentiate 𝑆 wrt a pixel 𝑥 𝑗 :

𝜕𝑆

𝜕𝑥 𝑗
= 1 − ln

𝑥 𝑗

𝑚 𝑗
−
𝑥 𝑗𝑚 𝑗

𝑥 𝑗𝑚 𝑗
= − ln

𝑥 𝑗

𝑚 𝑗
= 0

which requires 𝑥 𝑗 = 𝑚 𝑗 for all 𝑗 . So in the absence of data, the result defaults to m
– we often take m as a constant (non-zero) image. [20%]

(c) (i) The FT of the sampled image 𝐺𝑠 (with sampling intervals of Δ1,Δ2) is given
by

𝐺𝑠 (𝜔1, 𝜔2) =
1

Δ1 Δ2

∞∑︁
𝑝1=−∞

∞∑︁
𝑝2=−∞

𝐺 (𝜔1 − 𝑝1Ω1, 𝜔2 − 𝑝2Ω2)

where 𝐺 is the FT of the unsampled image.
Thus the spectrum of the sampled image is the spectrum of the original image
repeated at gridpoints (spacing Ω1,Ω2). Therefore the spectrum will look like:

Fig. 2
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These repetitions of the spectrum are referred to as aliasing. If our sampling,
Ω𝑖 = 2𝜋/Δ𝑖, is greater than twice Ω𝐵𝑖 (the highest freqs in image) we do not have
overlap – if not, the spectra overlap and this lead to aliasing artefacts. [15%]

(ii) Sketch to be done – pretty trivial.
Unaliased implies that Ω𝑖 > 2Ω𝑐𝑖, where Ω𝑖 = 2𝜋/Δ𝑖 and Ω𝑐𝑖 are the highest freqs
in the 𝑖 direction (𝑖 = 1, 2).
Suppose image is of width and height (𝑎1, 𝑎2), then Δ𝑖 = 𝑎𝑖/𝑛𝑖, where 𝑛1 =

512, 𝑛2 = 256.
Highest 𝜔1 freq is Ω𝑐1 = 200Δ𝜔1, and the highest 𝜔2 freq is Ω𝑐2 = 120Δ𝜔2, where
Δ𝜔𝑖 = 2𝜋/(𝑛𝑖Δ𝑖) = 2𝜋/𝑎𝑖.
Therefore if we are to downsample to (𝑛′1, 𝑛

′
2) so as just to avoid aliasing, we have

Δ′𝑖 =
𝑎𝑖

𝑛′
𝑖

,
2𝜋
Δ′
𝑖

> 2Ω𝑐𝑖

which means:

2𝜋𝑛′1
𝑎1

> 2
(
200

2𝜋
𝑎1

)
and

2𝜋𝑛′2
𝑎2

> 2
(
120

2𝜋
𝑎2

)
which tells us that 𝑛′1 > 400 and 𝑛′2 > 240. Therefore the max downsampling we
can do in order to avoid aliasing is (400 × 240).
[ A simpler argument involving ratios is fine] [25%]
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3 (a) The figure below shows the main blocks in any image coding system. x is a
monochrome (𝑌 ) image. Elements of x are 𝑥(n) ≡ 𝑥(𝑛1, 𝑛2), where 𝑛1 runs over rows and
𝑛2 runs over columns.

[5%]

(b) Let us apply 𝑇 to 2 × 2 blocks of 𝑋 via 𝑇𝑋𝑖 𝑗𝑇𝑇 , where 𝑋11 is the first block, 𝑋12 is
the second block, etc.

𝑇𝑋11𝑇
𝑇 = 𝑇𝑋12𝑇

𝑇 =
1
2

[
1 1
1 −1

] [
1 1
1 1

] [
1 1
1 −1

]
=

[
2 0
0 0

]

𝑇𝑋21𝑇
𝑇 = 𝑇𝑋12𝑇

𝑇 =
1
2

[
1 1
1 −1

] [
2 2
3 3

] [
1 1
1 −1

]
=

[
5 0
−1 0

]
Therefore

𝑌 =


2 0 2 0
0 0 0 0
5 0 5 0
−1 0 −1 0


Now rearrange the image 𝑌 into a regrouped image 𝑌 ′

𝑌 ′ =


2 2 0 0
5 5 0 0
0 0 0 0
−1 −1 0 0


Thus we see that we have non-zero entries in the top LH 2 × 2 subimage and non-zero
entries in the bottom LH 2× 2 subimage – corresponding to having low frequency content
(top two rows of 𝑋) and Lo-Hi (low pass horizontal, high pass vertical) frequency content
(bottom two rows). This is exactly what we would expect. [35%]
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(c) If

𝑌 ′ =

[
𝑌 ′

11 𝑌 ′
12

𝑌 ′
21 𝑌 ′

22

]
and we take the sum of the squared entries as a measure of energy, we see that 𝐸11 = 58,
𝐸12 = 0, 𝐸21 = 2, 𝐸22 = 0. So we basically have most of the image energy in the Lo-Lo
sub-band and some energy in the Lo-Hi sub-band. The energy of the original image
is 8 + 14 + 36 = 58, of course, but now we have concentrated the energy into just two
sub-bands. When we quantise these sub-bands, we can quantise the sub-bands with low
energy more coarsely. We can also apply a further level of transform to the Lo-Lo band
to further concentrate the energy. It is the selective quantisation of these sub-bands that
enables us to effectively compress the image. [15%]

(d) Applying a 2×2 Haar transform to a typical natural image will give a distribution of
energies/entropies over sub-bands as illustrated below (this is for Lenna with 𝑄𝑠𝑡𝑒𝑝 = 15:

Any similar looking sketches will be fine. [15%]

(e) The approximate entropy is arrived at by assuming that the distribution of the non-
Lo-Lo sub-bands can be approximated by a laplacian pdf:
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𝑝(𝑥) = 1
2𝑥0

e−|𝑥 |/𝑥0

If we form the variance of this pdf (
∫
𝑥2𝑝(𝑥)𝑑𝑥) we find that it is 2𝑥2

0. Thus the SD (𝜎)
is
√

2𝑥0, meaning that 𝑥0 = 𝜎√
2
.

𝑄 is the step size of the uniform quantiser used. [15%]

(f) The 𝑛 × 𝑛 DCT (for 𝑛 > 2) gives us more basis functions and therefore better
frequency resolution when we decompose into subbands. Exeperimentally the 8× 8 DCT
is optimal for standard compression.
If we take the 8-point DCT we can see that odd rows possess even symmetry about their
centres and the even rows possess odd symmetry. This enables us to write the transform
as two lots of 4× 4 matrix multiplications. The same symmetry arguments can be applied
again on one of the 4 × 4 matrices. In this way the number of operations required to
perform the DCT can be more than halved. [15%]
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4 (a) Such a filterbank is sketched below.

Assume that the max freq 𝑓𝑚𝑎𝑥 is 1
2 𝑓𝑠 (Nyquist), so that the passband of our original 𝑁

samples is 0 − 1
2 𝑓𝑠.

At the first level the highpass signal has 𝑁/2 samples and goes from 1
4 𝑓𝑠 − 1

2 𝑓𝑠.

At the second level the highpass signal has 𝑁/4 samples and goes from 1
8 𝑓𝑠 − 1

4 𝑓𝑠.

At the third level the highpass signal has 𝑁/8 samples and goes from 1
16 𝑓𝑠 − 1

8 𝑓𝑠.

At the fourth level the highpass signal has 𝑁/16 samples and goes from 1
32 𝑓𝑠 − 1

16 𝑓𝑠. [20%]

(b) The inverse tree is just the reverse of the tree shown in Part (a) (upsample before
𝐺0(𝑧) and 𝐺1(𝑧)).
the Perfect Reconstruction (PR) conditions are:

𝐺0(𝑧)𝐻0(𝑧) + 𝐺1(𝑧)𝐻1(𝑧) ≡ 2

and
𝐺0(𝑧)𝐻0(−𝑧) + 𝐺1(𝑧)𝐻1(−𝑧) ≡ 0

[15%]

(c) Substitute into first PR equation:

𝐺0(𝑧)𝐻0(𝑧) + 𝐺1(𝑧)𝐻1(𝑧) = 𝐺0(𝑧)𝐻0(𝑧) + 𝐻0(−𝑧)𝐺0(−𝑧)

=⇒ 𝑃(𝑧) + 𝑃(−𝑧) = 2

This requires all 𝑃(𝑧) terms in even powers of 𝑧 to be zero, except the 𝑧0 term which
should be 1. The 𝑃(𝑧) terms in odd powers of 𝑧 may take any desired values since they
cancel out. [15%]
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(d)

𝑃0(𝑍) = (1 + 𝑍)2 (1 + 𝑎𝑍) = 1 + (2 + 𝑎)𝑍 + (1 + 2𝑎)𝑍2 + 𝑎𝑍3

= 1 + 3
2
𝑍 − 1

2
𝑍3 where 𝑎 = −1

2 to suppress the term in 𝑍2

..since we know we can only have odd powers of 𝑧.
Suppose we allocate the factors of 𝑃0 such that (1 + 𝑍) gives 𝐻0 and (1 + 𝑍) (1 + 𝑎𝑍)
gives 𝐺0. This split gives the LeGall (3,5) tap filters. [Other answers are acceptable]. [20%]

(e)
[20%]

(f)
[10%]

END OF PAPER
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