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 EGT3 
 ENGINEERING TRIPOS PART IIB 
______________________________________________________________________ 
 
 Wednesday 30 April 2014 9.30 to 11.00 
______________________________________________________________________ 
 
 
 Module 4G6 
 
 CELLULAR AND MOLECULAR BIOMECHANICS 
 
 Answer not more than three questions. 
 
 All questions carry the same number of marks. 
 
 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Write your candidate number not your name on the cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Attachment: 3C7 datasheet (2 pages). 
Engineering Data Book  

 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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1. Wood cells are prismatic in shape, with the cross-section of a regular hexagonal 
honeycomb, as shown in Fig. 1(a).  The cell walls comprise cellulose fibres and these 
are idealised by a prismatic, regular triangular lattice, as sketched in Fig. 1(b). 

(a) Obtain an expression for the relative density 1ρ  of the hexagonal lattice in terms 
of its strut thickness 1t  and strut length   l1 .  Likewise, obtain an expression for the 

relative density  ρ2  of the triangular lattice in terms of its strut thickness 2t  and strut 

length   l2 .   [20%] 

(b) Determine the uniaxial strength of the hexagonal lattice 1Yσ  in terms of the yield 
strength YSσ  of the cell wall material.   [40%] 

(c) Determine the uniaxial strength of the triangular lattice 2Yσ  in terms of the yield 
strength Fσ  of the cellulose fibres.   [30%] 

(d) Hence obtain an expression for 1Yσ  in terms of Fσ .  [10%] 

 

 
 
                 Fig. 1(a)                                    Fig. 1(b) 
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2 In the Huxley crossbridge model for a muscle,  n x( )  is the fraction of attached 

crossbridges, where  x  is the position of an actin binding site from the equilibrium 
position of a myosin head.  Assume that the attachment and detachment of the 
crossbridges is governed by a first order kinetic scheme with attachment and 
detachment rate constants  f x( )  and  g x( ) , respectively. 

 
(a) Determine the steady-state  n x( )  in terms of  f x( )  and  g x( )  for a muscle in 

isometric tension.   [20%] 
 
(b) Given that: 
 
   f x( ) = 0  ;  and   g x( ) = g1  ;   for 0x <  ; 

   f x( ) = f0 ; and   g x( ) = g0  ;    for   0 ≤ x ≤ h  ; 

   f x( ) = 0  ; and   g x( ) = g0 ;     for  x > h  ; 

determine  n x( )  for shortening at a constant velocity   V = −dx / dt  .  Here 0g , 0f , and 

h  are constants.    [50%] 
 
(c) Qualitatively discuss how one might use the Huxley crossbridge dynamics model 
to calculate the response of a muscle in Hill’s quick-release experiments (step change in 
tension).     [30%] 
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3 (a)  Describe the physical basis for the Young’s modulus of biological tissues by 
explaining how the following concepts dictate the modulus: 
 (i) persistence length   [25%] 
 
 (ii) nodal connectivity   [25%] 
 
(b) Qualitatively describe the myosin crossbridge cycle with reference to conversions 
of ATP to ADP.    [25%] 
 
(c) Describe the tension versus length curve of a single muscle fibre. Suppose that the 
tension decreased nonlinearly with increasing length for striation spacings greater than 
2.5 µm. Would this invalidate the theory that the crossbridges working independently 
generate the tension?   [25%] 
 

 

 

 

4 (a)  Summarize the main mechanical functions of the cytoskeleton within a cell 
by reference to the microtubules, actin cortex and intermediate filaments. [25%] 
 
(b) (i) Briefly describe the working of the sodium-potassium pump in animal cells.  [25%] 
 
 (ii) How does the concentration of ATP affect the rate of the sodium-potassium 

pump?     [25%] 
 
 (iiii) The drug Ouabain competes with K+ for external potassium binding sites of 

the Na+-K+ ATPase. Discuss the effects of Ouabain on animal cells with reference 
to the sodium-potassium pump.   [25%] 

 

 

 

    END OF PAPER 
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Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 

  Discs and tubes    Spheres 

 Equilibrium σθθ  =  
d(rσrr)

dr    +  ρω2r2    σθθ  =  
1
2r 

d(r2σrr)
dr     

 Lamé’s equations (in elasticity) σrr  =  A  –  
B
r2   –   

3+ν
8  ρω2r2   –  

Eα
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c

r
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B
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r
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B
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2. Plane stress and plane strain 

Plane strain elastic constants 21 ν−
=

EE ; 
ν

νν
−

=
1

 ; ( )ναα += 1  

  Cartesian coordinates Polar coordinates 

Strains εxx  =  
∂u
∂x  εrr  =   
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or (in elasticity) 
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Equilibrium  
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∇4φ  =  0  (in elasticity) 
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3. Torsion of prismatic bars 

   Prandtl stress function:     σzx  (= τx)  =  
y∂

∂ψ ,     σzy  (= τy)  =  – 
x∂

∂ψ  

   Equilibrium:      T   =  2 ∫
A

dAψ  

   Governing equation for elastic torsion:      βψ G22 −=∇    where  β  is the angle of twist per unit length. 

 
4. Total potential energy of a body 

       ∏  =  U  –  W 

   where     U  =  12 
⌡
⌠

V
ε~

T [D] ε~ dV    ,     W  = P~  T  u~        and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  σP,  can be obtained from the equation 

       









σxx – σP σxy σxz

σxy σyy – σP σyz

σxz σyz σzz – σP

   =  0 

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  σP.   

Expanding:  σP3   –  I1 σP2  +  I2σP  –  I3   =   0   where  I1  =  σxx  +  σyy  +  σzz,   

       I2   =   
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σxx σxy

σxy σyy
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σxx σxy σxz

σxy σyy σyz

σxz σyz σzz
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6. Equivalent stress and strain 

 Equivalent stress  σ̄   =   
1
2  { }(σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2 1/2 

 Equivalent strain increment  dε̄    =  
2
3  { }dε12  +  dε22  +  dε32 1/2 

 

 

7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |σ1 – σ2|,  |σ2 – σ3|  or  |σ3 – σ1|   =  Y    =   2k, and then,    

   if  σ3  is the intermediate stress,   dε1 : dε2 : dε3   =  λ(1 : –1 : 0) where  λ  ≠ 0. 

 von Mises 

 Material yields when, (σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2   =   2Y2  =  6k2, and then 

    
dε1
σ'1

      =      
dε2
σ'2

     =     
dε3
σ'3

       =     
dε1 – dε2
σ1 – σ2

   =    
dε2 – dε3
σ2 – σ3

    =     
dε3 – dε1
σ3 – σ1

    =   λ   =   
3
2 

dε̄
σ̄       . 

SDG, October 2013 



Numerical answers to 4G6 
 
1. (a) 

√
;			 2√3	 /   

 

   (b) ; 						 ;									
	

			 c 	 	
	
	
2.			 a 		 / 	
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