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EGT2
ENGINEERING TRIPOS PART IIB

CRIB

Module 4G7

CONTROL & COMPUTATION IN LIVING SYSTEMS

Answer both questions in section A. Answer one question in section B.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Manuscripts referenced in section B are attached.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
Engineering Data Book
CUED approved calculator allowed

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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SECTION A

Answer both questions.

1 Consider the case of a species - governed by the antithetic integral feedback / ,
represented by the dynamics

¤G = I1 − WG + F
¤I1 = ` − [I1I2
¤I2 = \G − [I1I2 .

I1 and I2 are the concentrations of the species used for implementing the antithetic integral
feedback, G is the concentration of the controlled species, and F is an additional exogenous
perturbation. Take F = 1 , \ = 1, W = 1, ` = 10, [ = 10.

(a) Explain how the antithetical integral feedback implements integral action. Why is
integral action important for homeostasis? [20%]
An integrator is realised by the difference I1 − I2, which integrates the mismatch between
the production rate ` and the measured output \G. For instance,

¤I1 − ¤I2 = ` − \G ⇒ I1(C) − I2(C) =
∫ C

0
` − \G(g)3g .

Integral action is needed to achieve G = `/\ at steady state. The integral
∫ C
0 ` − \G(g)3g

converges to a constant, i.e. to an equilibrium, only when ` = \G. It is used to estimate
the control action needed to bring the mismatch ` − \G to zero, at steady state.

(b) Compute the equilibrium of the system and discuss why closed-loop stability is
needed to guarantee homeostasis. [20%]
From second and third equations, G4 =

`

\
= 10. Substituting into the first equation,

I1,4 = WG4 − F = 10 − 1 = 9. Substituting into the third equation, I2,4 =
\G4

[I1,4
= 1

9 .

The equilibrium of the system is attractive, i.e. system trajectories converge asymptotically
to it, only if the closed-loop system is stable. In other words, if the state of the system
is temporarily perturbed by exogenous perturbations, stability guarantees that the system
state returns to the equilibrium.
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(c) The Nyquist plot below is obtained by “opening the loop” at G, as illustrated by the
block diagram below. Derive the range of \ ≥ 0 that guarantees homeostasis. Explain
your answer. [20%]
The Nyquist locus intersects the real axis at about 0.01. From the Nyquist criterion,
closed-loop stability is thus guaranteed for 0 ≤ \ < 100 (no encirclements of the point
−1). Since G4 =

`

\
, we need \ > 0. Likewise, I1,4 = WG4 − F =

`

\
− 1, which is greater

than or equal to zero only if \ ≤ 10. So, for homeostasis, \ must satisfy 0 < \ ≤ 10.

(d) Discuss how delays on the controlled species - affect the behaviour of the system. [20%]
A large delay ) > 0 can make the closed-loop system unstable. With a delay, the feedback
information stored by the integrator has a time lag

∫ C
0 ` − \G(g − ))3g. This may induce

under/over-corrections, leading to instability in the form of undamped oscillations. The
destabilising effect of a delay can also be observed on the Nyquist diagram, where a delay
induces a (frequency-dependent) phase shift. This may lead to the Nyquist locus crossing
the point −1 even if \ < 10.

(e) Briefly discuss how the parameter W affects the closed-loop behaviour. [20%]
A larger W has a stabilising effect on the closed-loop behaviour (by reducing the gain in
the feedback loop). Looking at the equilibrium, I1,4 = WG4 − F = W 10

\
− 1, which is

greater than or equal to zero only if \ ≤ 10W. This extends the range of \ that guarantees
homeostasis. Likewise, I2,4 =

\G4
[I1,4

= 1
W 10
\
−1

, which shows how I2 is subject to a larger

depletion to compensate for the larger degradation rate W.
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ż1 = µ− ηz1z2

ż2 = u− ηz1z2
ẋ = z1 − γx+ w

w
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2 (a) Consider an enzymatic reaction with Michaelis-Menten kinetics,

( + �
:1−−⇀↽−−
:2

�(
:3−−→ % + �

and let B, 4, G and ? denote the concentrations of substrate ((), enzyme (�), enzyme-
substrate complex (�() and product (%) respectively.

(i) Write down a system of ordinary differential equations describing the
concentration dynamics of G and B in terms of total enzyme, 40 = 4 + G. [10%]

¤G = :140B − (:1B + :2 + :3)G
¤B = −:140B + (:1B + :2)G

(ii) How is the absence of a reverse reaction from % + � to �( justified? [10%]
concentration of % is assumed to be very low and reverse rate less energetically
favourable, so total reverse rate is negligibly small

(iii) By making the quasi-steady state assumption, ¤G ≈ 0, obtain an expression
for the dynamics of the substrate concentration B(C) in terms of the reaction rate
constants and 40. [30%]
setting ¤G = 0 in the above ODE, we get:

G =
:140B

:1B + :2 + :3

Substituting this into the expression for ¤B we obtain,

¤B = −:140B +
(:1B − :2):140B
:1B + :2 + :3

=
−:1:340B

:1B + :2 + :3
as required.

(b) Themembrane potential,+ , of a cell obeys the following dynamics (in dimensionless
form):

¤+ = 1.25+ − +
3

3
− ' + 1.5 (1)

¤' = −' + 1.25+ + 1.5 (2)

where ' is an adaptation variable.
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(i) Sketch the phase plane of this system. [10%]
Phase plane (flow arrows optional):

(ii) Find the equilibria of this system and quantify their stability. [30%]
Solving:

0 = 1.25+ − +
3

3
− ' + 1.5

0 = −' + 1.25+ + 1.5

and substituting for ' we obtain

1.25+ − +
3

3
− 1.25+ = 0.

This has only one real solution at + = 0, which gives single equilibrium for the
system at (0, 1.5)
The Jacobian at this equilibrium is(

1.25 −+2 −1
1.25 −1

)
=

(
1.25 −1
1.25 −1

)
and this has characteristic equation,

0 = (1.25 − _) (−1 − _) + 1.25 = _(_ − 1/4)

so eigenvalues are _ = 0, 0.25. The fixed point is unstable.
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(iii) What can you deduce about the long term behaviour of this system? [10%]
The trajectories of the system are bounded: flow in all quadrants of the phase plane
for large absolute values of + and ' directs into a finite rectangle. This bounded
region contains a single unstable fixed point. Therefore by the Poincare-Bendixon
theorem, depending on initial conditions the system will either reside precisely at
this fixed point or exhibit limit cycle oscillations of a fixed amplitude.
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SECTION B

Answer one question.

3 Refer to the attached paper by Korobkova et al (2004) Nature.

(a) Summarise the aim, approach, findings and motivation of the paper in no more than
500 words. Provide an interpretation and comment on any limitations of the study. You
may use diagrams if you wish. [65%]
A good answer is a clearly written, well structured answer that demonstrates an
understanding of the material. A model example might cover the following points:

Aim: To measure the fluctuations of CW/CCW motor bias in E Coli in a way that allows
identification of properties at the single cell level that might not be apparent in
population-level measurements.

Approach: Immobilised E coli strains on a microscope slide and measured power spectrum of
fluctuations of flagellar motion after attaching fluorescent beads. Used generically
engineered strains to vary the copy number of key proteins in cells, allowing the
origin of long-lived fluctuations to be identified.

Findings: It had been assumed that switches in flagellarmotion in single cellswerememoryless,
e.g. exhibited exponential distribution of switching times. However, the study
identified a trend in the power spectrum of switching events at low frequencies.
This suggests that there are long-lived variations in the CW/CCW bias of the motor.
The authors used inducible mutants to vary the copy numbers of key proteins in the
chemotaxis pathway, identifying the methytransferase CheR as a major contributor
to long-lived fluctuations.

Motivation: Individuality in motor switching fluctuations is directly linked to a cell’s tendency
to explore an environment or dwell in a locality. Since this phenotype is difficult for
individual cells tomodify adaptively, any evidence for how explore/exploit behaviour
might vary at the individual level is relevant to its fitness in changing environments.

Interpretation: the long dwell times indicate that individual cells can shift their explore/exploit
behaviour over time. This indicates that there is both population-level variability
and within-individual variability in this key property over time

Limitations: as with all genetic alterations there could be unanticipated side-effects of
manipulating protein expression level. The study also does not directly assess
how this phenotypic variability affects chemotactic behaviour.
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(b) What is meant by "non-genetic individuality" in the context of this study, how is
hypothesized to arise in the signalling network being studied, and what relevance might it
have for bacterial chemotaxis? [35%]

•Non-genetic individuality means when there are detectable differences in phenotype
within a clonal population

•in this context it means that there is diversity in the steady state CW/CCW switching
behaviour of the flagellar motor

•this is due to variation in the copy number of signalling proteins in each cell (e.g.
CheR)

•the relevance to chemotaxis is that this determines the steady state tumble probability
and thus the average steady state run length; this will lead to variation in behavioural
phenotype with some cells exploring large areas with long runs and others tumbling
more frequently and exploring smaller areas

4 Refer to the attached paper by Veraart et al (2012) Nature.

(a) Summarise the aim, central hypothesis, approach and findings of the paper in no
more than 500 words. Provide an interpretation and comment on any limitations of the
study. You may use diagrams if you wish. [65%]
A good answer is a clearly written, well structured answer that demonstrates an
understanding of the material. A model example might cover the following points:

Aim: to test a theory-based approach for inferring the proximity of a critical transition
(abrupt, qualitative change in dynamics or steady state behaviour) in a model living
system that is relevant to a wider ecosystem.

Approach: authors use a bioreactor with cyanobacterial cultures whose growth rate depends
on light being maintained in a healthy range. Under normal conditions incoming
light is shielded by the biomass, resulting in a stable population density. Increasing
light intensity above a health range causes cell death, which reduces shielding and
eventually causes collapse of the population. To measure the proximity to collapse,
they gradually increase light intensity and perturb the culture with dilution, measure
optical density (proportional to cell density) and estimate recovery rate. They
also estimate variance and autocorrelation of the optical density timeseries. The
experiment is repeated in two cultures.
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Findings: as predicted by previous theory, recovery rates grow as the populations approach
collapse, so too does autocorrelation time. However there is no detectable trend for
variance.

Interpretation: even in a complex, uncertain nonlinear system it may be possible to detect signs of
an abrupt transition by looking at changes in the recovery rate of state variables;
this is because many transitions necessitate slowing down of the flow field near a
bifurcation (e.g. "ghost" near a saddle node bifurcation).

Limitations: only two replicates; population density has clear decreasing trend for both cultures
in Figure 1, would help to hold light and observe a steady-state; this is a closed,
laboratory controlled system and a questionable model for a complex ecosystem, so
some of the claims about wider utility remain open; the lack of a trend in variance
is not convincingly explained.

(b) Comment on the methods put forward for inferring the proximity of an ecological
system to a critical transition. Are these methods practical and can you foresee issues with
their reliability? [35%]
Key points include:

•two methods are proposed: (1) passively monitoring variance/autocorrelation
time from timeseries and (2) estimating relaxation time (slowing) through direct
perturbation

•both methods have problem that proximity to transition is hard to infer

•both methods may be insensitive to certain types of abrupt transitions, where
parameter range for slowing is narrow (together with previous point contributes
to false negatives)

•slowing is not a sufficient condition for a critical transition (can give a false positive)

•need to perturb the system for (2) which is not always possible and could even
destabilise it

•usual measurement issues: robust estimates of variance and exponential decay are
sensitive to noise/data hungry

END OF PAPER
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