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SECTION A

Answer both questions.

1 Consider the case of a species - governed by the antithetic integral feedback / ,
represented by the dynamics

¤G = I1 − WG + F
¤I1 = ` − [I1I2
¤I2 = \G − [I1I2 .

I1 and I2 are the concentrations of the species used for implementing the antithetic integral
feedback, G is the concentration of the controlled species, and F is an additional exogenous
perturbation. Take F = 1 , \ = 1, W = 1, ` = 10, [ = 10.

(a) Explain how the antithetical integral feedback implements integral action. Why is
integral action important for homeostasis? [20%]

(b) Compute the equilibrium of the system and discuss why closed-loop stability is
needed to guarantee homeostasis. [20%]

(c) The Nyquist plot in Fig. 1 is obtained by “opening the loop” at G, as illustrated
by the block diagram in Fig. 1. Derive the range of \ ≥ 0 that guarantees homeostasis.
Explain your answer. [20%]

(d) Discuss how delays on the controlled species - affect the behaviour of the system. [20%]

(e) Briefly discuss how the parameter W affects the closed-loop behaviour. [20%]
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ż1 = µ− ηz1z2

ż2 = u− ηz1z2
ẋ = z1 − γx+ w
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2 (a) Consider an enzymatic reaction with Michaelis-Menten kinetics,

( + �
:1−−⇀↽−−
:2

�(
:3−−→ % + �

and let B, 4, G and ? denote the concentrations of substrate ((), enzyme (�), enzyme-
substrate complex (�() and product (%) respectively. :1, :2, :3 are positive rate constants.

(i) Write down a system of ordinary differential equations describing the
concentration dynamics of G and B in terms of total enzyme, 40 = 4 + G. [10%]

(ii) How is the absence of a reverse reaction from % + � to �( justified? [10%]

(iii) By making the quasi-steady state assumption, ¤G ≈ 0, obtain an expression for
the dynamics of the substrate concentration, B(C), as a function of time, C, in terms
of the reaction rate constants and 40. [20%]

(b) Themembrane potential,+ , of a cell obeys the following dynamics (in dimensionless
form):

¤+ = 1.25+ − +
3

3
− ' + 1.5

¤' = −' + 1.25+ + 1.5

where ' is an adaptation variable.

(i) Sketch the phase plane of this system. [10%]

(ii) Find the equilibria of this system and quantify their stability. [30%]

(iii) What can you deduce about the long term behaviour of this system? [20%]
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SECTION B

Answer one question.

3 Refer to the attached paper by Korobkova et al (2004) Nature.

(a) Summarise the aim, approach, findings and motivation of the paper in no more than
500 words. Provide an interpretation and comment on any limitations of the study. You
may use diagrams if you wish. [65%]

(b) What is meant by "non-genetic individuality" in the context of this study, how is
hypothesized to arise in the signalling network being studied, and what relevance might it
have for bacterial chemotaxis? [35%]

4 Refer to the attached paper by Veraart et al (2012) Nature.

(a) Summarise the aim, central hypothesis, approach and findings of the paper in no
more than 500 words. Provide an interpretation and comment on any limitations of the
study. You may use diagrams if you wish. [65%]

(b) Comment on the methods put forward for inferring the proximity of an ecological
system to a critical transition. Are these methods practical and can you foresee issues with
their reliability? [35%]

END OF PAPER
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in the hypothalamic regions were determined.
To detect protein expression of a1 and a2 DN-AMPK and g1 CA-AMPK in the

hypothalamus after injection of adenoviruses, we immunoprecipitated AMPK from
hypothalamic lysates (500 mg of protein pooled from 5–6 animals) with a polyclonal
antiserum recognizing the a1, a2, b1, b2 and g1 subunits of AMPK (for CA-AMPK) (gift
from D. Carling) or this antiserum combined with sheep a1 and a2 antiserum (for
DN-AMPK) bound to protein-A and -G sepharose beads, and blotted with monoclonal
antibodies against the c-Myc tag (for a1 and a2 DN-AMPK) (9B11, Cell Signalling) or the
HA tag (for g1 CA-AMPK) (Roche).

Detection of mRNA of DN- and CA-AMPK
Total RNA was isolated from PVH, ARH, VMH/DMH and LH by TriReagent (Molecular
Research Center). First-strand cDNAwas synthesized from 2 mg of total RNA using reverse
transcriptase (Ambion) primed by random decamer. PCR amplification of Myc-tagged a1
and a2 DN-AMPK and HA-tagged g1 CA-AMPKwas performed with Platinum Taq DNA
polymerase (Invitrogen). The conditions of PCR and design of the primers are described
in Supplementary Methods.

Statistical analysis
All values are mean ^ s.e.m. Data were evaluated by factorial analysis of variance and the
Newman-Keuls multiple range test.

Received 22 December 2003; accepted 27 February 2004; doi:10.1038/nature02440.

Published online 17 March 2004.
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The chemotaxis network that governs the motion of Escherichia
coli has long been studied to gain a general understanding of
signal transduction. Although this pathway is composed of just a
few components, it exhibits some essential characteristics of
biological complexity, such as adaptation and response to
environmental signals1. In studying intracellular networks,
most experiments and mathematical models2–5 have assumed
that network properties can be inferred from population
measurements. However, this approach masks underlying tem-
poral fluctuations of intracellular signalling events. We have
inferred fundamental properties of the chemotaxis network
from a noise analysis of behavioural variations in individual
bacteria. Here we show that certain properties established by
population measurements, such as adapted states, are not con-
served at the single-cell level: for timescales ranging from
seconds to several minutes, the behaviour of non-stimulated
cells exhibit temporal variations much larger than the expected
statistical fluctuations. We find that the signalling network itself
causes this noise and identify the molecular events that produce
it. Small changes in the concentration of one key network
component suppress temporal behavioural variability,
suggesting that such variability is a selected property of this
adaptive system.

At the level of populations, it is well-established that the chemo-
taxis network produces a steady output in the absence of external
stimuli, generally referred to as ‘adapted steady-states’. This mecha-
nism3 allows bacteria to maintain their steady-state behaviour
independently of the absolute concentration of chemo-effectors in
their environment5. Because the network’s output from individual
cells is noisy (that is, it fluctuates randomly), it is standard practice
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to average responses across a population of cells, which eliminates
part of the information required to understand how an individual
cell performs basic computations6,7. But noise is not always a
nuisance: it can carry important information about intracellular
signalling events8–10. We investigated how the behaviour of an
individual bacterium of E. coli in a homogeneous environment
fluctuates with time. In particular, we asked whether there are
specific molecular events that could cause temporal behavioural
variability in an individual cell.

We monitored the switching events of individual flagellar
motors11 from non-stimulated cells in a medium in which attractant
was not present. Bacteria were immobilized onto microscope slides
and flagella were marked with micro-beads to visualize their
rotation with dark-field illumination12. Binary time series con-
structed from the clockwise (CW) and the counterclockwise
(CCW) rotations of a single motor defined the chemotaxis network
output11 (Fig. 1a). The CW bias is the fraction of time that a motor
spends rotating in the CW direction11,13 (Fig. 1b). We studied the
temporal variations of the CW bias by carrying out spectral analysis
of the binary time series generated by switching events of individual
bacterial motors. In this approach, the power spectrum is a measure
of the amplitude of the fluctuations of the CW bias at a given
timescale. The standard assumption has been that switching events
are independent and governed by a Poisson process, which implies
that the CW and CCW time intervals are uncorrelated and expo-
nentially distributed13. Under these assumptions, the power spec-
trum would exhibit a flat profile over timescales larger than the
typical switching time (Supplementary Information).

We recorded a 170-min-long time series of switching events from
an individual motor of a RP437 wild-type bacterium, which was
immersed in a medium in which no attractant was present and that
did not support growth. Unexpectedly, the corresponding power
spectrum exhibited a growing profile up to 15 min (,103 s, Fig. 2a).
The fact that the power spectrum is not flat indicates that the CCW
and CW intervals are either not ‘independently and identically
distributed (IID)’, or IID but not exponentially distributed. It also
means that the variability of the CW bias over these timescales is
larger than that expected from a motor with exponentially dis-
tributed intervals and similar mean switching frequency. Because
not all the cells exhibited the same temporal variability, the slopes of
power spectra varied from cell to cell, but all fell into the open
interval (0, 1). Consequently, we computed 222 power spectra from
clonal individual RP437 wild-type cells and summarized their
average trend in Fig. 2b. We found that the trend of 222 individual

power spectra exhibited a growing profile as frequencies decreased.
The temporal variability of the network output, the CW bias, was
larger than that expected from uncorrelated and exponentially
distributed CW and CCW intervals14,15.

To reconcile our data with ensemble measurements, we averaged
together the previous 222 binary time series from individual cells
before spectral analysis so that we could study the nature of the
fluctuations of the bias of a population. The resulting power
spectrum exhibited a flat profile at any timescale greater than
seconds, indicating that the temporal variations of the bias obtained
from a population could be produced by uncorrelated, exponentially
distributed CW and CCW intervals13 (Fig. 2b, inset). In this system,
the time average of single-cell behaviour differs from population
behaviour for timescales ranging from few to 103 seconds.

The chemotaxis network is a phosphoryl cascade that controls the
concentration of the phosphorylated form of a signalling molecule,
the soluble response regulator CheY1 (Supplementary Infor-
mation). The phosphorylated form, CheY-P, binds preferentially
to the cytoplasmic base of the motors. When the concentration of
CheY-P increases, motors spend more time spinning clockwise. To
investigate the molecular origin of behavioural variability of single
PS2001 mutant cells, we used the activated CheYD13K mutant,
which mimics the effect of CheY-P but does not need to be
phosphorylated to be active4. The active CheYD13K signalling
molecule was expressed so that the mean CW bias from the
population would be at about the wild-type level. The power
spectrum associated with the CheYD13K mutant provided the
spectral characteristics of the bacterial motor (Fig. 2b). At short
timescales the spectrum was similar to wild type and peaked at
about one second. For longer timescales, the data showed that when
the concentration of the active form of the signalling molecule was
not regulated by the chemotaxis network, but stably expressed from
an inducible plasmid, the noise level was much lower than in wild-
type cells (Fig. 2b). This result suggests that temporal behavioural
variability in a wild-type cell emerges from the signalling processes
taking place in the network itself.

We characterized the underlying statistical nature of the distri-
butions of the CWand CCW switching events in the PS2001 mutant
and wild-type cells. An individual wild-type cell exhibits a distri-
bution of short CW length intervals that is dominated by an
exponential behaviour (Fig. 2c). However, we found that the distri-
bution of CCW intervals from several wild-type cells deviates
significantly from exponential behaviour14,16 (Fig. 2c). In particular,
this distribution could instead be approximated at long timescales

 
 

Figure 1 Schematic view of the apparatus. Cells were specifically attached onto a

microscope slide. Latex beads (0.5mm, Polyscience) were used as markers to visualize

single rotating flagella12 on an inverted microscope with dark-field illumination. A four-

quadrant photomultiplier (PMT) was used to record the trajectory of the bead. Typical

assays lasted from 10 to 20min. a, Binary time series, indicating the direction of rotation.

b, CW bias versus time. The bias was computed as the fraction of time the bead span

clockwise within a 30 s moving window.
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by a power law (Fig. 2c, inset). For mutant cells in which the
motor output was decoupled from the activity of the signalling
pathway, both CWand CCW intervals were exponentially distributed
(Fig. 2d).

To determine the specific molecular events that account for the
observed temporal variability of the CW bias, we focused on
receptor methylation (Supplementary Information), which has
been shown through population measurements to be a key deter-
minant of the steady-state motor bias3,5,17. We investigated how the
temporal behavioural variability noted above depends on the
concentration of the methyltransferase CheR, which adds methyl
groups at multiple receptor residues. The cheR-deleted RP4968
mutant was complemented with a lac-inducible low-copy plasmid
expressing the CheR protein5. Intracellular concentration, [CheR],
was varied over an approximately tenfold range by induction with
increasing amounts of isopropyl-b-D-thiogalactoside, [IPTG]
(Methods). At low [CheR] ([IPTG] ¼ 0 mM), wild-type levels of
behavioural variability were recovered. At timescales greater than
seconds, the power spectrum of the network output of individual
cells exhibited a growing profile similar to that of wild-type cells
(Fig. 3a). Surprisingly, as [CheR] was increased to about two times
the wild-type concentration ([IPTG] ¼ 1 mM), the power spectrum
exhibited a weaker slope, which faded away for values of [CheR] $
four times the wild-type level (Fig. 3a). Similarly, as [CheR] was
increased, the initially power-law-distributed CCW intervals segued
towards exponential behaviour (Fig. 3b). Therefore, the temporal
behavioural variability could be reduced and furthermore
suppressed by increasing [CheR]. For individual wild-type cells
with low [CheR], the output bias exhibited temporal variations

greater than statistical fluctuations expected from an exponential
distribution of uncorrelated CW and CCW intervals, whereas
for slightly higher [CheR] this noise was markedly suppressed
(Fig. 3c).

To gain further insights into the signalling pathway, we simulated
the chemical reactions between the cytosolic chemotaxis proteins
(CheR, CheB, CheY and CheZ) and the receptor–kinase complexes
(Supplementary Information). To capture time correlations in a
reacting system, we performed stochastic simulations using the
StochSim package6 (Methods). We simulated the temporal fluctu-
ations in CheY-P concentration and computed the corresponding
power spectra for various values of [CheR]. For approximately wild-
type levels of [CheR], the wild-type-like spectrum was qualitatively
recovered (Fig. 4a). The fluctuations of concentration of the active
signalling molecules (CheY-P) exhibit a strong correlated noise.
Moreover, the amplitude of these fluctuations could be modulated
by the methylation and demethylation of the receptors catalysed by
CheR and CheB (Supplementary Information). Because CheR
works at saturation, the number of active receptors increases
nonlinearly in an ultra-sensitive19,20 fashion with [CheR] (data not
shown). At wild-type concentrations of CheR, about half of the
receptors are active and the associated fluctuations of [CheY-P] are
maximal21,22. For higher [CheR], four times the wild-type level or
more, almost all the receptors are active and the associated fluctu-
ations of [CheY-P] are smaller (Fig. 4b).

To support the hypothesis that the methylation process controls
temporal behavioural variability, we analysed the noise from the
RP8610 (RP8610 strain and pRR27 plasmid; J. S. Parkinson, per-
sonal communication) mutant deleted for the cheR, cheB and all

Figure 2 Noise of the chemotaxis network. a, Power spectrum of the network output from

one non-stimulated individual wild-type cell. b, Mean spectrum computed by averaging

the spectra from wild-type and mutant cells. Black line, mean spectrum from 40 wild-type

cells; grey line, spectral characteristics of the bacterial motor. Mean power spectrum of

individual power spectra from 16 PS2001 mutant cells complemented by the inducible

cheYD13K gene ([IPTG] ¼ 25, 30 mM). The error bars (grey and black line) show the

standard error. Inset, power spectrum of the CW bias of a population of 40 cells.

c, Distribution of CW (grey) and CCW (black) intervals from the cell in a. Inset, cumulative

distribution of the same CCW intervals (black line). Power law with an exponent of

approximately21.2 (grey straight line). d, CW and CCW interval distributions from eight

mutants (PS2001) expressing CheYD13K (CW bias ranging from 0.2 to 0.3).
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chemoreceptor genes. In this strain, mutant serine receptors that
mimic the activity of receptors with a fixed level of methylation were
stably expressed from a lac-inducible vector (Methods). The result-
ing variability was found to be smaller than in wild-type cells and
the associated power spectra were identical to the spectral charac-
teristics of the motor when uncoupled from the network (Fig. 3a,
inset; compare with Fig. 2b). This result suggests that the slow
methylation process of the receptors contributes to the observed
behavioural variability.

It is conceivable that such variability, and in particular the power-

law behaviour of CCW intervals, will be reflected in the run-length
distribution of individual swimming cells. A power-law distribution
of the run lengths may provide bacteria with an optimal search
strategy to adapt to a complex environment with a sparse distri-
bution of nutrients23 (Supplementary Information).

Three decades ago, Spudich and Koshland established the exist-
ence of ‘non-genetic individuality’ in clonal populations of Salmo-
nella typhimurium24. We analysed the molecular origin of the
temporal variations in signalling within individual bacteria. Both
experimental and simulation data showed that within individual
bacteria, molecular noise emerges as a tunable source of behavioural
variability (Figs 3c and 4b). If the relative concentration of a key
chemotaxis protein ([CheR]) had been slightly higher, any wild-
type cell would have exhibited a steadier behaviour. Our results
revealed that such a regime was not selected for in the chemotaxis
system. On the contrary, the presence of a large temporal beha-
vioural variability in this simple sensory system19,21,22 appears to be
the manifestation of the ‘adapted’ state of wild-type cells (Fig. 4b).
Considering the ubiquity in nature of signalling pathways with
similar design principles19, it would be surprising not to find that
molecular noise in other signal transduction networks is also a
selectable source of cell fate variability. A

Methods
Bacterial strains and plasmids
Cells were grown from an overnight culture in tryptone broth at 30 8C and then harvested
(optical density ¼ 0.5 at 595 nm). Cells were then washed and suspended in minimal

Figure 3 Behavioural variability as a function of [CheR]. a, Average power spectra of the

motors, switching events from RP4968 cells versus [CheR] levels. Black, wild-type level of

CheR ([IPTG] ¼ 0mM); dark grey, twofold wild-type level ([IPTG] ¼ 1mM); grey, fourfold

wild-type level ([IPTG] ¼ 5 mM); light grey, tenfold wild-type level ([IPTG] ¼ 30mM). Error

bars show the standard error. Inset, effect of fixed methylation level on behavioural

variability; black, as in Fig. 2a; grey, spectra from RP 8610 mutant cells complemented

with Tsr mutant serine receptors. b, CCW interval distributions versus [CheR] (same cells

and conditions as in panel a). Exponential fit (straight black line). c, Network output signals

from a wild-type and a mutant cell. Black, wild-type cell with a mean CW bias of 0.2 and a

switching frequency of 0.4 s21 (same cell as in Fig. 2a); grey, RP4968 mutant

(concentration ten times the wild-type level) with a mean CW bias of 0.4 and a switching

frequency of 0.9 s21 (same cell as a; light grey). The network output is defined as

[bias2,bias . ]/,bias . .

Figure 4 Simulated variability of the chemotaxis network. a, Power spectra of simulated

temporal variations of the signalling molecule concentration [CheYp] for increasing

[CheR]. [CheR] was increased from 0.5 (black) to eight times the wild-type level (light

grey). In the frequency interval 0.1–1 Hz, the spectra displayed a flat region robust to

changes in [CheR]. b, Variability of the network output [CheYp] versus [CheR]. Wild-type

cell as in ref. 6 (filled circle). The variability was defined as the power of the output signal

(for a chosen [CheR]) normalized by the power of the network output for a [CheR] eight

times the wild-type level. Means of the power and standard deviations were computed for

a frequency interval (1023, 1024 Hz).
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medium (7.6 mM (NH4)2SO4, 2 mM MgSO4, 20mM FeSO4, 0.1 mM EDTA, 0.1 mM
L-methionine, 60 mM potassium phosphate pH 6.8). PS2001 and DeltaR RP4968 mutants
were grown with various IPTG concentrations. CheYD13K was expressed from pMS164
(ref. 5). The average [CheR] (expressed from pUA4) was estimated using the relationship
between [IPTG] and [CheR] assessed by immunoblots in ref. 5.

PS2001 strain
This strain is deleted for CheB, CheZ and CheY. The strain was transformed with an
inducible lac promoter pMS164 (ref. 4) plasmid expressing a cheYD13K gene. The
CheYD13K mutant acts like CheY-P but does not need to be phosphorylated to be active.
The active CheYD13K signalling molecule was expressed from the lac-inducible vector
pMS164 (with [IPTG] ¼ 25–30 mM).

RP4968 strain
cheR is deleted in this strain. Cells were complemented with a lac-inducible low-copy
plasmid pUA4 (ref. 5) expressing the CheR protein. CW bias was controlled by the
induction level of CheR.

RP8610 strain
This strain carries a complete deletion of cheR, cheB, tsr, tar, tap and trg. The strain was
transformed with an inducible lac promoter pRR27 plasmid expressing the Tsr mutant
gene20. The methylation sites of this Tsr mutant are QQQQE. Varying the Tsr expression
allowed us to set the steady-state bias at any value. In Fig. 3a (inset), the bias was adjusted
to about wild-type level.

Simulations
The reaction system was based on a two-state model18 of receptor activation, and its
parameter values used to simulate the wild-type behaviour were identical to those
described in ref. 6. In Fig. 4, [CheR] was incremented from its wild-type value in factors offfiffiffi

2
p

. For each value of [CheR], 63 independent time sequences of CheYp (each 170 min
long) were generated and normalized by their standard deviation. The average of the 63
corresponding power spectra was plotted for each [CheR].
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Muscle contraction is driven by the motor protein myosin II,
which binds transiently to an actin filament, generates a unitary
filament displacement or ‘working stroke’, then detaches and
repeats the cycle. The stroke size has been measured previously
using isolated myosin II molecules at low load, with rather
variable results1–4, but not at the higher loads that the motor
works against during muscle contraction. Here we used a novel
X-ray-interference technique5,6 to measure the working stroke of
myosin II at constant load7 in an intact muscle cell, preserving the
native structure and function of the motor. We show that the
stroke is smaller and slower at higher load. The stroke size at low
load is likely to be set by a structural limit8,9; at higher loads, the
motor detaches from actin before reaching this limit. The load
dependence of the myosin II stroke is the primary molecular
determinant of the mechanical performance and efficiency of
skeletal muscle.

Muscle cells from skeletal and cardiac muscle are composed of
many identical functional units called sarcomeres, each of which
contains overlapping myosin and actin filaments (Fig. 1a). Muscle
shortening is generated by the relative sliding of the two types of
filament, driven by the working stroke in the myosin-head domains
(Fig. 1b, c). The myosin filament (blue in Fig. 1) is symmetrical
about its midpoint and contains two regular arrays of myosin heads
(red in Fig. 1). When a muscle fibre is illuminated by a parallel beam
of X-rays, the 14.5 nm spacing of the heads in each array produces a
strong X-ray reflection called the M3. Interference between the
diffracted X-rays from the two head arrays in each filament
produces a finely spaced modulation of this reflection, from
which the interference distance (ID; Fig. 1) between the two arrays
can be measured with a precision of a few angstroms5,6. In principle,
the myosin II stroke size in the intact muscle fibre can be determined
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Recovery rates reflect distance to a tipping point in a
living system
Annelies J. Veraart1, Elisabeth J. Faassen1, Vasilis Dakos1, Egbert H. van Nes1, Miquel Lürling1,2 & Marten Scheffer1

Tipping points, at which complex systems can shift abruptly
from one state to another, are notoriously difficult to predict1.
Theory proposes that early warning signals may be based on the
phenomenon that recovery rates from small perturbations should
tend to zero when approaching a tipping point 2,3; however, evidence
that this happens in living systems is lacking. Here we test such
‘critical slowingdown’ using amicrocosm inwhich photo-inhibition
drives a cyanobacterial population to a classical tipping pointwhen a
critical light level is exceeded. We show that over a large range of
conditions, recovery from small perturbations becomes slower as the
systemcomes closer to the critical point. In addition, autocorrelation
in the subtle fluctuations of the system’s state rose towards the
tipping point, supporting the idea that this metric can be used as
an indirect indicator of slowing down4,5. Although stochasticity
prohibits prediction of the timing of critical transitions, our results
suggest that indicators of slowing down may be used to rank com-
plex systems on a broad scale from resilient to fragile.
Systems ranging from the brain and society to ecosystems and the

climate canhave tippingpoints atwhichminorperturbations can invoke
a critical transition to a contrasting state6. The complexity of such sys-
tems prohibits accurate predictive modelling. However, it has been sug-
gested that even without mechanistic insight, the proximity of a tipping
point may be inferred from generic features of fluctuations and spatial
patterns that can be interpreted as earlywarning indicators1,7–9. This idea
is based on the phenomenon that at bifurcation points at which stability
of an equilibrium changes, the dominant real eigenvalue becomes zero10.
As a result, the rate of recovery from perturbation should go to zero as
such bifurcations are approached (Supplementary Notes 1). This phe-
nomenon, which is known as critical slowing down, is well established
in physics but it has only recently been suggested that the recovery rate
from perturbations could be an indicator of the distance to a tipping
point in complex living systems such as ecosystems3.
Although the prospect that the fragility of living systems could be

probed this way is attractive, experimental evidence has so far been
lacking. Instead,much work has been focused onways to infer slowing
down from indirect indicators such as autocorrelation and variance.
However, although these indicators are linked to slowing down in
simple stochastically forced models1,5,9, recent theoretical studies indi-
cate that the indirect indicators will not always respond in simple
ways11 (Brock,W. A. & Carpenter, S. R., submitted). This is confirmed
by empirical studies on the climate5, the food web of a lake12 and
laboratory populations of water fleas13. In these systems, trends in
indirect indicators occurred but were not all consistent. Here we use
acontrolled systeminwhich there ispositive feedbackbetweenorganisms
and their physical environment to test critical slowing down directly
from recovery rates.
We exposed cyanobacteria in chemostat microcosms to increasing

light stress. This is a well understood system for which models have
shown alternative stable states and tipping points14,15. Cyanobacteria
provide the shade needed for their own growth, creating a positive
feedback, and this constitutes the mechanism behind the bistability.

Although light is needed for photosynthesis, light levels that are too
high are detrimental to primary producers such as the cyanobacteria
that we used.Mutual shading can ameliorate this stress, and is thus one
of the ways in which facilitation can outweigh competitive interactions
under harsh conditions16. Such feedback between organisms and their
environment is the mechanism behind alternative stable states in a
range of ecosystems17. Indeed, as a result of the facilitative shading, our
system can maintain a high biomass under incident light levels that
prohibit growth in low biomass cultures. A fold bifurcation that repre-
sents a classical tipping point occurs at the light level at which this
mechanismbecomes tooweak to allowpersistence of the population14,15

(see Supplementary Notes 1 for a model analysis). Here, shading
becomes insufficient to prevent growth inhibition, and the resulting
loss of biomass further weakens the stabilizing shading effect. This
implies that a positive feedback is driving the system towards a crash.
Wecultured cyanobacteria in two independently controlled chemostat

microcosms (M1 and M2) and increased incident light daily in small
steps to the point at which the population collapsed (see Methods). We
perturbed the populations every 4–5 days by flushing with medium
(10% of the volume), which was equivalent to a reduction of the
biomass by 3–5% owing to incomplete mixing. Consistent with the
model results (Supplementary Fig. 1.1) the populations maintained a
relatively high biomass throughout the experiment until they collapsed
rather markedly when a tipping point was reached (Fig. 1 and
Supplementary Notes 3). Recovery rates of both systems decreased

1Department of Aquatic Ecology andWater QualityManagement,WageningenUniversity, PO Box 47, NL-6700 AA,Wageningen, The Netherlands. 2Department of Aquatic Ecology, Netherlands Institute of
Ecology, Royal Netherlands Academy of Arts and Sciences, PO Box 50, 6700AB, Wageningen, The Netherlands.
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gradually towards the tipping point, starting far from the bifurcation
(Fig. 2a), and tended to decline more rapidly towards the tipping point.
This was also predicted by our model (Supplementary Fig. 1.1).
In most complex systems, the mechanisms that are involved in

causing the slowing down will be difficult to unravel. However, in
our particular system the photosynthetic capacity of the cyanobacteria
that is at the heart of their growth potential can be sensed through
measurements of the efficiency of their light harvesting system (see
Methods). Whereas biomass remained relatively high in the trajectory
towards the critical threshold, this specific indicator of their vigour
declined linearly with increasing light stress, approaching zero at the
point of collapse (Fig. 2b). This is an independent confirmation that
the light-induced stress to the cyanobacteria in the two independently
operated microcosms does indeed undermine the resilience of the
system to the point at which collapse is inevitable.
In systems that are subject to stochastic perturbation regimes, slow-

ing down is predicted to be reflected in characteristic changes in fluc-
tuations of the state. In particular, it has been proposed that increases
in autocorrelation and variance can be interpreted as indirect indica-
tors of slowing down1,4,9. Although our experiment was not primarily
designed to study the effect of stochastic perturbation regimes, there
are continuous subtle fluctuations in our measurements of the density
of the cyanobacterial population.These fluctuationswill reflect amixture
of factors including measurement noise and instabilities in the lighting
system as well as true population fluctuations induced by the slightly
fluctuating conditions in the bubbled microcosms. We studied how
autocorrelation and variance in these subtle fluctuations changed as
our system approached the critical point. For this we analysed all the
stretches of continuous measurements of 1 day between the experi-
mental interruptions caused by the daily stepwise increase of light
intensity and the dilution perturbation events (see Methods).
Although autocorrelation was quite variable in the time series that
we studied, there was a significant increase towards the tipping point
in both experimental systems (Fig. 2c). No trend in variance was
apparent in the systems (Fig. 2d, see also Supplementary Notes 4).

These results are consistentwith the prediction thatmeasuring recovery
rates from perturbations is a robust way to detect critical slowing
down18, whereas indirect indicators of slowing down may or may not
increase towards a critical threshold11. Also, our findings are consistent
with the prediction that autocorrelation is usually directly related to
slowing down and may therefore provide a more robust signal than
variance in some situations11.
Perturbation experiments such as the ones in our experiment will

often be impossible in large complex systems, leaving indirect indica-
tors as the only tool by which to infer slowing down. However, experi-
mental probing of recovery rates may be feasible in some smaller
systems, as long as the timescales are appropriate and stochastic fluc-
tuations are small relative to experimental perturbations. Even in larger
systems, local perturbations may be an option to probe resilience,
allowing adaptivemanagement to steer the systemaway from the brink
of collapse.
Perhaps most importantly, our experimental demonstration of slow-

ingdown implies aproof of concept, providing a fundamental basis to the
current search for generic early warning signals in systems ranging from
thebrain and ecosystems to society and the climate1.The fact that slowing
down in our system started far from the critical point suggests that
recovery rates as well as indirect indicators may be used to rank such
complex systems on a broad scale from stable to critical. This does not
mean that slowing down can be used to actually predict transitions.
Stochastic shockswill trigger critical transitions always before the bifurca-
tion point is reached, indicating that there is inherent unpredictability in
systems. Nevertheless, the prospect of having generic indicators of
resilience is a potentially large step forward. Mechanistic models to
predict tipping points in nature and society accurately are simply
beyond our reach, leaving empirical estimation of fragility as one of
the key challenges in complex systems science today1.

METHODS SUMMARY
Experiments were performed in two identical flat chemostat microcosms19 (M1
and M2) in which we cultured cyanobacteria (Aphanizomenon flos-aquae (L.)
Ralfs) on a nutrient-rich growth medium, modified from BG11 medium20. Light
irradiance was increased in steps of 23 mmol photonsm22 s21 forM1 and 29 mmol
photons m22 s21 each day for M2. Photosynthetic efficiency was measured from
diurnal samples. The intensity of the light passing through the chemostats was
averaged at 5-min intervals, and light attenuation coefficients (e, m21) were cal-
culated as an indicator of biomass:

e~
{ ln Iout=Iinð Þ

d

where Iin is the intensity of the incoming light (mE), Iout is the intensity of the
outgoing light (mE) and d is the depth of the chemostats (m). External perturba-
tions were performed every 4–5 days by diluting the culture with 170ml of sterile
medium. A baseline for calculating recovery rates was constructed for each per-
turbation event (Supplementary Notes 2 and Supplementary Fig. 2.1) by fitting a
quadratic curve from the period just before perturbation to the period just before
the next perturbation (thin curves in Fig. 1). Recovery rates after each perturbation
(l, per day) were then calculated from a linear regression of –ln(e0 2 ec) against
time, where e0 is the light attenuation of the baseline (m21) and ec is the light
attenuation of the chemostat (m21)3.
The lag 1 autocorrelation and variance were analysed for each uninterrupted

period between the dailymanipulations after removing the trends from each period
by fitting polynomials of 2 degrees. To check for effects of nonlinear propagation of
measurement noise, we constructed a null model that assumed that all residuals
were due to uncorrelated normally distributed noise. As variance showed a trend
towards the bifurcation in this null model (Supplementary Table 4.1), we corrected
the observed variance by subtracting the median of the null model (Fig. 2d).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Experimental conditions. Experiments were performed in two identical flat
chemostats (V 1.7 l, 0.05 m optical path length)19. In these chemostats we cultured
the cyanobacteriumAphanizomenon flos-aquae (L.) Ralfs on a nutrient-rich sterile
growth medium that was modified from BG11 medium20. The chemostats were
kept at a stable temperature of 21 uC.A continuous flowofmoistened air of 60–100
mlmin21 was supplied through a sintered glass sieve at the bottom of the vessel to
ensure homogenous mixing of the culture. The air was mixed with CO2 to satisfy
the inorganic carbon need of the culture. CO2 flow was adjusted, when needed, to
maintain a pHof between 7.1 and 8.1. The chemostatswere run at a dilution rate of
0.18 per day for chemostat 1 (named M1) and 0.21 per day for chemostat 2 and
(M2). They were illuminated using white LED lamps (SL3500w, Photon Systems
Instruments). Light irradiance was increased by 23mmol photonsm22 s21 per day
for M1 and 29mmol photons m22 s21 per day for M2 by a Light Studio 1.3 12C
interface (Photon Systems Instruments, Brno).
Dailymaintenance andmeasurements. Each day thewalls of the chemostats were
scrapedwith amagnetic stirrer to prevent cyanobacterial attachment. After scraping,
we took samples to determine chlorophyll a concentrations and photosystem II
quantum yield (in triplicate) using a PhytoPAM (phyto-ED), and to determine
biovolume in a 400-ml sample volume (in triplicate) using a Casy TT Cell Counter,
with a 150-mm capillary (Innovatis AG Casy Technology). The intensity of the light
penetrating through the chemostat was recorded continuously using RA100 light
sensors (Bottemanne Weather Instruments) that were attached to the outer wall of
the chemostat and stored as 5-min averages on Squirell SQ1000 dataloggers (Grant
Instruments). The light sensors were removed during scraping of the chemostats.
Perturbations. At an incoming light intensity of 477mmol photons m22 s21 for
M1 and 571 for M2, the light attenuation coefficients of the chemostats became
stable. From this moment on, perturbations were performed every 4–5 days by
diluting the culture with 170ml of sterile medium. The dilution was always per-
formed 2 h after the daily stepwise increase in light.
Recovery rates. We used the calculated light attenuation (Fig. 1 and
Supplementary Note 2) as a measure of the cyanobacterial biomass21. Before
calculation of recovery rates, the light data were corrected for sensor attachment
differences (Supplementary Note 2). Vertical light attenuation (e, m21) was cal-
culated from the corrected light data:

e~
{ ln Iout=Iinð Þ

d

where Iin is the intensity of the incoming light, Iout is the intensity of the outgoing
light (bothmeasured in mmol photons m22 s21) and d is the optical path length of
the chemostats (m). Light attenuation data were smoothed for calculation of
recovery rates by taking a moving average of 1 h.
To calculate recovery rates, a baseline was constructed for each perturbation

event. This baseline was obtained by fitting a quadratic curve from the period just
before perturbation to the period just before the next perturbation (Fig. 1).
Parameters for the baseline were estimated by forcing it through the sets of e
and t (time, day) at the start and end of the curve, and by forcing the slope at
the start of the curve. The start slope was determined by the slope of the light
attenuation data in the 20 h before disturbance.
Recovery rate after perturbation (l, per day) was defined by an exponential

model3:

de
dt

~{l e0{ecð Þ

where e0 is the light attenuation coefficient of the baseline and ec is the light
attenuation of the chemostat (both m-1). We calculated l by a linear regression
of { ln e0{ecð Þ against time. To avoid the effect of the light data correction for
sensor position (Supplementary Note 2), recovery rates were calculated only on
the first 18–20 h after perturbation. In this period there was no change in light
meter position. Finally, the recovery rates were linearly regressed against incoming
light intensity.
Autocorrelation and variance. Autocorrelation and variance of the continuous
small fluctuations in our time series were analysed for each uninterrupted period
between the daily manipulations and light increments. We performed all analyses
onuntransformeddata (5-min averages of light attenuationdata) aswell as ondata
that were averaged over non-overlapping periods of 30 min. We removed the
trends from each period with a constant light level by fitting polynomials of 2
degrees to the light attenuation, and we used the residuals to calculate the auto-
correlation by fitting an autoregressive model of lag 1 and variance by estimating
sample variance per day.
We analysed the effect of measurement noise using a null model (see

Supplementary Notes 4).

21. Huisman, J. & Weissing, F. J. Light-limited growth and competition for light in
well-mixed aquatic environments: an elementary model. Ecology 75, 507–520
(1994).
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature11029

Corrigendum: Recovery rates
reflect distance to a tipping point in
a living system
Annelies J. Veraart, Elisabeth J. Faassen, Vasilis Dakos,
Egbert H. van Nes, Miquel Lürling & Marten Scheffer

Nature 481, 357–359 (2012)

There was a scaling error in the light attenuation values of Fig. 1 and
Supplementary Fig. 2.1 (about 210 should have been subtracted from
each value). Also, the sentence ‘‘We perturbed the populations every
4–5 days by removing 10% of their biomass through dilution.’’ on
page 357 should have read ‘‘We perturbed the populations every
4–5 days by flushing with medium (10% of the volume), which was
equivalent to a reduction of the biomass by 3–5% owing to incomplete
mixing.’’. This sentence and Fig. 1 and Supplementary Fig. 2.1 have
been replaced in the PDF and HTML versions online. These changes
do not alter any of the conclusions of this Letter.We thank J. Huisman
for drawing our attention to these issues.
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