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3 An axisymetric drop of liquid of density p sits on a planar surface in a gravitational
field g, as shown below.

vacuum

lg
liquid R(2)
I 20

ST = et - A Ty i s I

e Sohdr‘_‘:i" -

B Co T e NN i i FEERYR i LA e

The system contains three interfaces, each of which costs an interfacial energy y; per unit
area, with i = 1 being the liquid-vacuum, i = 2 liquid-solid and i = 3 solid-vacuum. Thus,
if each interface has an area A;, the total interfacial energy is

Ein = A1y1 + Agyp + Aszys.

The drop’s shape minimizes its gravitational and interfacial energy, while having fixed
volume V.

(a) The shape is described by the function R(z), with z = 0 being the solid, and z = h
being the top of the drop. R(z) minimizes a functional of the form

h
E(R) = f I(R, R, 7)dz + AR(0)? + B.
0

Find expressions for the integrand, /(R, R/, z) and the constant A. You do not need to find
the constant B. [20%]

Interfacial energy - the solid vacuum interface is a surface or revolution, the solid-liquid
is a disk, and the solid-vacuum is an annulus.

h
Eint(R) = f 2R1 + R'(2)2dz + y2(nR(0)?) + y3(xL? ~ nR(0)?)
0

Volume - just a volume of revolution.

h
V(R) = f nR%dz
0

Gravitational energy, using mgh, is

h
Eg(R) = f pgznR%dz
0
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Using the method of Lagrange multipliers to implement the constraint of total volume, we
get the modified functional

h
ER) = f Y127RJ1 + R'(2)? + pgznR* + A(nR* = V)dz + (y5 — y3)7nR(0)? + B
0
so I(R,R’,z) = y12nR\1 + R'(2)? + pgzyrR2 + /1(7TR2 = V)and A = (yp —y3)7m.

(b)  The drop makes a contact angle § with the solid, as marked on the diagram. Use the
directional derivative of E(R) to find cos(8). [30%]

Taking the directional derivative in the direction of § R(z), we get

h
DE(Z)[(SR]:f ﬂ5R+ ol
0

14
- R
IR aR,dR dz + (y2 — v3)m2R(0)SR(0)

Integrating by parts,

har ) ol h
DE(2)[6R] = fo ROk ( g R,) SRdz + [(6_1%7) 6R]0 + (¥2 — ¥3)m2R(0)SR(0)

We need this to vanish for all directions R. Requiring the integral term to vanish would
give the standard EL equation for R(z), but that isn’t the question. Instead, we ask that
the 6 R(0) boundary term vanishes, giving

ol

(v2 —v3)n2R(0) = IR

z=0

Inserting the definition of I, gives

1
Y127 R(O) R (0) ————== + (¥2 — ¥3)27R(0) = 0

And hence {

V1 + R’(0)2 71

Identifying that R’ (0) = cot(8), this gives

Y2—73
Y1

cosé =

(c) Assuming gravity is negligible:
(i)  Show that R(z) obeys the differential equation

1
V1 + R

Page 4 of 10 (cont.
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where A is a constant. [30%)]
Neglecting gravity removes the z dependence from the integrand, so we may use the
Beltrami form of the EL equations to get

d ol
—|(I-F =
a’z( RaR’) 0

(I—R'—a—{-) =c

Integrating, we get

OR’
Then inserting the definition of 1:

2RR’
(/ler2 +7y127RV1 + R2 - R’}/l—) =c
V1+ R?2

(/17rR2 + y12n =c

)
1+ R?

2y1 )
R (AR+——— =c
V1 + R?

However, looking at the top boundary, we have R = O meaning that ¢ = 0. Redefining
the constant A then leads to the stated result.

(ii)  Find the functional form of R(z), and give a geometric interpretation. You do
not need to determine the value of any constants in your solution. [20%]

2
R?= (L) -1
AR

Taking the negative square root, as R'(z) is negative for the drop

2
1
R =—[—] -

[l

We may integrate this directly to get

1 2
—| —R2 =
(/1) z+d

Solving first for R', we get

Page 5 of 10 (TURN OVER
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where d is a constant of integration. Squaring and rearranging we get

R+ (z+d)? = [+ ’
A

This is the equation of a circle of radius % and centered at z = —d, so the droplet is

forming a spherical cap.

[Hint: You may regard 4 as a known quantity, so you do not need to minimizing over .]

Page 6 of 10
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4 A liquid crystal is a fluid of rod shaped molecules, in which the molecules align
along a direction described by the unit vector, fi. If the alignment direction fi(x) is spatially
varying then the liquid crystal has an Frank elastic energy,

1 1 1
Ep(h)= | =K, (V-@)%+ 2Ky (- VxA)> +=K3|Ax VxAZdV.
2 2 2

where K, K and K3 are known as the Frank constants, and the integral is over the volume
of the liquid crystal.

(a) Express the integrand of the Frank energy using index notation and the summation

convention. [15%]
on; On;
v-a2=24J
Ox; 0x;
on on
A A2 k
(h-Vxn) = ”ifijk_a‘;;nlelmnaT;
anm 6”;—

n A2
XV XN|®=¢€ ni€r1m—~€inphn€pgr——
| ijkMj€klm 3)61 inp"n€pqr o

(b) For all subsequent parts of the question, we take the Frank constants to be equal,
K = Ky = K3 = K. Use index manipulations to show the energy may be simplified to: [25%]

1
EﬂﬂzifiK(W-mLHmeﬂdV

Applying the epsilon-delta identity to the to €;jy€;yp in K3 term gives

i x V x ]2
Bnme ony
=€;ikNi€klm—=— €Einptn€pgr =——
ijk™jCklm éxl inpfn pqraxq
6’1;71 51’1,-
=(0inOkp —O0ipOkn)Ni€klm——nNn€pgr—~——
( jn%kp Jjp kn) j€kim 9%, n pqraxq
6”]11 6”.;- an]n anr

:”/zeplma_xl”nqura - I’lpE,llma—x[nnepqra—xq
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Since i is a unit vector, npn, = 1, so this simplifies to

. onm ony . 6nmn . 6nr
plm— ax €pgr 5 (9x pEnlm 77— 9, n€pgr o 6x

Bnme 6nr . 6nm 6nr
=€ —_— -n n
plm ax; pqr o (9Xq n€nlm 7 9x] p€pqr c")x

=V x A2 - (A V x f)?

proving the desired result.

(c) A drop of liquid crystal will adopt an alignment fi(x) that minimizes the Frank
elastic energy, subject to the constraint that fi is a unit vector. By considering a directional
derivative with respect to fi in the direction of 6fi, show that the minimizing alignment
obeys the partial differential equation

V24 = A(x)f,

where A(x) is an unknown scalar field. You do not need to find A(x). [40%)

We introduce a Lagrange multiplier field A(X) to implement the constraint n;n; = 1. Using
index notation, the modified functional to be minimized has has the form

1_ (0n; On;j on ony,
E(h) = f K(axz 5%, +€ Uk& kfzmna m) + A(njn; — 1)dV.

Taking the directional derivative w.r.t. fi in the direction of 6fi given

d f lK (6(11,- + ebn;) 0(nj + €dn;) e d(ny + €dny) d(np + +E(5nn))

DE(h)[6A] = — ;
()on] de 2 0x; 0x; Cijk O0x; Cimn Oxm

+A((n; + €6n;)(n; + €6n;) — 1)dV] g .

1 d6n; On;j aény ony,
= | “K{2——> +2¢ +2An;6n;dV
fZ ( 9x; o €ijk ox; Ezmnaxm) hion;

We swap k and i indices in the curl term, so everything has a dn;, then apply integration

J

by parts using the divergence theorem:

1 d6n; On;j Aén on
DE®@)[6i] = | =K [2——L + 2¢p ;j—— —2 ) +2An;6m;dV
(n)[ ll] fz ( axl (9)6] Ek]l ax} Ekmn axm) n'l n’l
0 371' 0 Ony
= f K( on; — o, axj ekj,cSn,ekmnaxj axm) + 24n;0n;dV

+ surface term

d On; 0 on
= f (K (_8_xl—8—)é - fkjifkmn‘g}‘]ja',n;) + 2/1n,-) on;dV + surface term

Page 8 of 10 (cont.
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Since on; is arbitrary, we get the following vector pde

K ( 0 37’[] 0 ann

——— = €Lii€hmne— | +24n; =0
Ox; Ox;j kji km"@xj me) !

Applying the epsilon-delta identity then gives

d On; 0 0n; o On;j
—_— - 2An; =0
( Ox;0x;  Oxpm Oxpm axj (9x,-) oA
a on;
~K——++2An; =0
ax;n 0Xm i
KV?%h = 22h

(d) The boundary of the drop has outward unit normal m. Find the energy minimizing
boundary condition on fi. Express your answer in index notation, and without permutation

symbols.
The integration by parts in the previous question yields the surface term:

1 on; on
0= f EK (25ni6_1cj-mi + 26kji6ni6kmnﬁmj) ds

Again, since 6n; is arbitrary, this yields the minimizing condition:

on; on

J n
O-—.—m-+€ € ——m;
i = % [ kji kmnaxm ]

J

Applying the epsilon-delta identity, we get as the final boundary condition:

on; on; on;
R S Wiecie NPt SO
Ol 6)6]' E axj' mJ 6.7(,' (s

END OF PAPER
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