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3 A cylindrical optical fiber has a refractive index, n(r), that varies with radius. Using
standard cylindrical coordinates, a light ray through the fiber follows a path (r (z), θ(z), z).

(a) Find a functional T (r, θ) for the time taken for a ray to travel from z = A to z = B. [10%]
Length element in cylindrical coordinates is

√
dz2 + dr2 + r2dθ2.

Speed=distance/time, so integrating and pulling dz out of the square-root gives

T =
∫ B

A

1
c

n(r)
√
1 + r′2 + r2θ′2 dz ≡

∫ B

A
L(r, r′, θ′)dz.

(b) According to Fermat’s principle, rays will follow paths that minimize T . Show that
Fermat’s principal leads to the following two equations [30%]

d
dz

(
r (z)2θ′(z)

)
= 0,

d
dz

*,
n(r)√

r′(z)2 + r (z)2θ′(z)2 + 1
+- = 0.

[Hint: Consider how the Beltrami special-case of the Euler-Lagrange equation works for
a functional of two functions.]
We are minimizing T with respect to two functions, θ(z) and r (z).
The integrand L(r, r′, θ′) does not depend on θ, so the standard E-L equation for θ(z)
simply reads

d
dz

∂L
∂θ′ = 0 → d

dz
*,

n(r)r2θ′√
1 + r′2 + r2θ′2

+- = 0.

The integrand does depend on r , so this EL-equation is not so simple. However, L does
not explicitly depend on z, so we may use the Beltrami manipulated form

d
dz

(
L − r′ ∂L

∂r′ − θ
′ ∂L
∂θ′

)
= 0

d
dz

*,n(r)
√
1 + r′2 + r2θ′2 − n(r)r′2√

1 + r′2 + r2θ′2
− n(r)r2θ′2√

1 + r′2 + r2θ′2
+- = 0

d
dz

(
n(r)√

1 + r′2 + r2θ′2

)
= 0

This is the second required equation. Combining it with the θ E-L equation gives
d
dz

(
r2θ′

)
= 0, as required for the first.

Length element in cylindrical coordinates is
√

dz2 + dr2 + r2dθ2.
Speed=distance/time, so integrating and pulling dz out of the square-root gives

T =
1
c

∫ B

A
n(r)

√
1 + r′2 + r2θ′2 dz
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(c) What may be concluded about a ray that enters the fiber in an r − z plane [10%]
Integrating the two equations above, we get

r (z)2θ′(z) = c,
n(r)√

r′(z)2 + r (z)2θ′(z)2 + 1
= d.

where c and d are constants of integration. In this case θ′ = 0 on entry, so c = 0,
indicating that θ′ must remain zero throughout — i.e. the ray remains confined to this
r − z plane.

(d) Find the refractive index profile n(r) that allows a helical ray at any radius. Set the
constants of integration such that the helix at radius r0 progresses by ∆z = p in each turn. [20%]
A helix has constant r (z) = r0, and constant θ′(z) = 2π/p.
Substituting for θ′ in the second equation of motion from the first gives:

n(r)√
r′2 + c2/r2 + 1

= d.

For r′ = 0 to be a solution, we need

n(r) = d
√
1 + c2/r2.

The first equation of motion gives the value of c as

r202π/p = c

So we have
n(r) = d

√
1 + 4π2r40/(p2r2).

The second constant, d, just scales the overall velocity, so it has no impact on the form of
the minimum time paths.

(e) The profile is actually n(r) = n0/(1 + λr). Show a ray that enters directed in an
r − z plane will move in a circle. [30%]
The equation of motion simply gives θ′ = 0, i.e. the ray remains in the r − z plane.
The second equation of motion becomes

d2 = (1 + λr)2
(
r′(z)2 + 1

)

where we have redefined the arbitrary constant (n0/d)2 = d2. Rearranging for r′,

dr
dz
=

√
d2

(1 + λr)2
− 1 =

√
d2 − (1 + λr)2

(1 + λr)
.
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Dividing and integrating:
∫

(1 + λr)√
d2 − (1 + λr)2

dr =
∫

dz = z + d3.

The r.h.s integral is straightforward as the numerator is the derivative of the denominator,

− 1
λ

√
d2 − (1 + λr)2 = z + d3.

Squaring, we have
d2
λ2
= (1/λ + r)2 + (z + d3)2.

which is the equation of a circle.
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4 A light, inextensible cantilever of length L and bending stiffness B is clamped on
the left and loaded with a point weight mg on the right, resulting in a vertical downward
deflection y(x) as shown in Fig. 1. The elastic potential energy of the cantilever is
proportional to its curvature squared which, for small deflections, we may take to be
E =

∫ L
0

1
2K y′′(x)2dx.

m
y(x)

θ(s)

x0 L g

Fig. 1

(a) The cantilever deformation minimizes the total potential energy. We first seek an
approximate solution using the Rayleigh-Ritz method with a trial function of the form:

y(x) =
N∑

i=0
ai

( x
L

)i
.

(i) Explain why a0 and a1 must be set to zero before starting the procedure. [5%]
For Rayleigh-Ritz, the trial function must obey the fixed (clamped) boundary
conditions - in this case y(0) = y′(0) = 0, hence a0 = a1 = 0.

(ii) Find the Rayleigh-Ritz approximate solution for N = 2. [15%]
For N = 2, we have y(x) = a2(x/L)2. Substituting this into the total energy

E =
∫ L

0
2Ka22/L4dx − mga2 = 2Ka22/L3 − mga2.

Minimizing w.r.t a2 gives

mg = 4Ka2/L3 → a2 = mgL3/(4K ).

N = 2 solution is
y(x) =

mgL
4K

x2.

(b) Use a directional derivative of the potential energy to find a differential equation for
y(x), and the appropiate boundary conditions. [25%]
Total potential energy is

E =
∫ L

0

1
2

K y′′(x)2dx − mgy(L).

Directional derivative w.r.t y in direction δy gives

DE(y)δy =
∫ L

0
K y′′δy′′dx − mgδy(L).
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Integrating by parts twice gives

DE(y)δy =
∫ L

0
K y′′′′δydx + [K y′′δy′]L0 − [K y′′′δy]L0 − mgδy(L).

At the x = 0 boundary we have clamped conditions, so δy(0) = δy′(0) = 0, so these terms
vanish in the directional derivative.

DE(y)δy =
∫ L

0
K y′′′′δydx + K y′′(L)δy′(L)] − K y′′′(L)δy(L) − mgδy(L).

For minimum energy we need the derivative to vanish for all deltay. This gives the
equation

K y′′′′(x) = 0

And the boundary conditions y′′(L) = 0, y′′′(L) = −mg/K . At x = 0 we have clamped
conditions y(0) = y′(0) = 0.

(c) Find the analytic solution y(x), and discuss its relation to Rayleigh-Ritz solutions
for N = 2, 3, 4. [15%]
The equation integrates four times to give

y(x) = a0 + a1
x
L
+ a2

x2

L2 + a3
x3

L3

Boundary conditions at x = 0 give a0 = a1 = 0.
Boundary conditions at x = L give

2a2 + 6a3 = 0

6a3
L3 = −mg/K → a3 =

−mgL3

6K

Substituting above then gives a2 =
mgL3
2 , and hence the form of the beam is

y(x) = mgL3(
x2

2L2 −
x3

6L3 ) =
mgx2

6K
(3L − x).

For N = 3 and N = 4 the RR trial function includes the exact answer, so it will give the
exact result. For N = 2 this is not true, so the RR will be an approximate solution with
higher energy.

(d) Alternativley, the deflection may be described by θ(s) the angle between the
cantilever and the horizontal as a function of arc-length, as shown in Fig. 1. The elastic
energy is now E =

∫ L
0

1
2Kθ′(s)2ds, and there is no assumption about small deflections.
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(i) Find the differential equation for θ(s), and the appropiate boundary conditions.
[20%]

The vertical displacement of the end is now y(L) =
∫ L
0 sin(θ)ds, so the potential

energy is

E =
∫ L

0

1
2

Kθ′(s)2 − mg sin(θ(s))ds

Taking the directional derivative with respect to θ in the direction δθ gives

DE(θ)δθ =
∫ L

0
Kθ′(s)δθ′ − mg cos(θ)δθds.

Integrating by parts once,

DE(θ)δθ =
∫ L

0
−Kθ′′δθ − mg cos(θ)δθds + [Kθ′δθ]L0 .

At s = 0 we have θ = 0 and hence δθ = 0, so this gives

DE(θ)δθ =
∫ L

0
−Kθ′′δθ − mg cos(θ)δθds + Kθ′(L)δθ(L).

Setting this to zero for all permitted δθ gives

Kθ′′ + mg cos(θ) = 0

with the boundary conditions θ(0) = 0 and θ′(L) = 0.

(ii) The cantilever deflects to a final angle θ(L) = θ f . Find the value of θ′(0). [20%]
The integrand of the energy does not depend on s, so we may use the Beltrami special
form

d
ds

(
1
2

Kθ′2 − mg sin(θ) − θ′Kθ′
)
= 0

which we can integrate to get

1
2

Kθ′2 + mg sin(θ) = c = mg sin(θ f ).

where the constant of integration has been fixed using the data at the r.h.s. At the
lhs, we thus have

θ′(0) =
2mg sin(θ f )

K
.

END OF PAPER
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