4M12 2023, JSB/1
(a) $\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}\left(\frac{-1}{4 \pi r}\right)=+\frac{1}{4 \pi} \frac{1}{r^{2}} \frac{\partial}{\partial r^{2}} r^{2}\left(\frac{1}{r^{2}}\right)=0$ ($r \neq 0$)

$$
\begin{aligned}
& \int_{V} \nabla^{2} \Phi d v=\oint_{S}(7 \Phi) \cdot d S=\oint_{S} \frac{\hat{R}_{r}}{4 \pi p} \\
& \Rightarrow \int_{v} \nabla^{2} \Phi d v=\frac{1}{4 \pi R^{2}} \oint d S=1
\end{aligned}
$$

(b) If δ-function is located at x^{\prime}
 and has strength $S(\underline{x})$, then the soln in (a) becomes

$$
\Phi=-\frac{S\left(\underline{x}^{\prime}\right)}{4 \pi\left|x-\underline{x}^{\prime}\right|}
$$

For a distributed source $S(x)$, superposition gives

$$
\Phi(\underline{x})=-\frac{1}{41+} \int \frac{s\left(x^{\prime}\right)}{\left|x-x_{1}^{\prime}\right|} d V^{\prime}
$$

(e)

$$
\nabla^{2} A=-\mu_{0} J_{\sim}(x)
$$

Can apply the result of (b) one component at a time, so

$$
\begin{aligned}
& A(x)=\frac{\mu_{0}}{4 \pi} \int \frac{J(\underline{x})}{|\underline{x}-\underline{x}|} d v^{\prime} \\
& B=\sim \left\lvert\, x A \underset{A}{A}=\frac{\mu_{0}}{4 \pi} \int \nabla x\left[\frac{J\left(x^{\prime}\right)}{\left|\underline{x}-\underline{x}^{\prime}\right|}\right] d v^{\prime}\right. \\
& \text { operates on } x \text { keeping } x^{\prime} \text { constant } \\
& \nabla x\left[\frac{J^{\prime}}{\left|\underline{x}-x^{\prime}\right|}\right]=\frac{1}{\left|\underline{x}-\underline{x}^{\prime}\right|} \operatorname{V}_{0}^{\mid x J^{\prime}}+\nabla\left(\frac{1}{\left|x_{-}-x^{\prime}\right|}\right) \times \underset{\sim}{J}\left(\underline{x}^{\prime}\right) \\
& =-\frac{x-x^{\prime}}{\left.|\underline{x}-\underline{x}|\right|^{3}} \times 3\left(\frac{x^{\prime}}{2}\right) \\
& \Rightarrow \quad \underset{r}{ }(\underline{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\underset{S}{s}\left(x^{\prime}\right) \times r}{r^{3}} d v^{\prime}, r \underline{x}-\underline{x}
\end{aligned}
$$

(d) $\quad \underset{\sim}{B}(x, t)=\frac{\mu_{0}}{4 \pi} \int \frac{J_{n}(\underline{x}, t) \times r}{|r|^{3}} d v^{\prime}, \quad r=x-\underline{x}^{\prime}$
cannot be correct because changes in $J\left(\underline{x}^{\prime}\right)$ take a finite time, $|r| / c \quad(c=$ speed of light $)$ to $\tilde{0}$ be felt at x. To correct for this we write

$$
A(x, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\bar{\sum}\left(x^{\prime}, t-\frac{r}{c}\right)}{|r|} d V^{\prime}
$$

where $t-|n| / c$ allows for the finite time of flight from x to \underline{x}^{\prime}. Thus

$$
B_{\sim}(x, t)=\nabla_{\lambda}(\underset{\sim}{A}(x, t))=\frac{\mu_{0}}{4 \pi} \int \nabla \times\left[\frac{\underset{r}{j}\left(\underline{x}^{\prime}, t-\frac{r}{c}\right)}{|r|}\right] d V^{\prime}
$$

4 MR 2023 CRIB
(a) (i) Need to write $k=\partial \theta / \partial x, \omega=-\frac{\partial \theta}{\partial t}$
in order to recaver local form $\eta \wedge A \exp [[i(k x-\infty)]$
イhus, $\frac{\partial k}{\partial t}=\frac{\partial^{2} \theta}{\partial i \partial t}=-\frac{\partial \omega}{\partial x}=-\frac{d \omega}{d x} \frac{\partial k}{\partial x}$
Bue $e_{j}=\frac{d_{j}}{d k}$, so $\frac{\partial k}{\partial t}+c_{g}(k) \frac{\partial k}{\partial x}=0$
(ii) winte $k=f\left(x-c_{y} t\right)=f(x)$

$$
\begin{align*}
& \frac{\partial k}{\partial t}=-f^{\prime}(x) \frac{\partial}{t t}\left(c_{g} t\right)=-f^{\prime}(x)\left[c_{y}+\frac{d c_{g}}{d k} \frac{\partial_{k}}{\partial t} t\right. \\
\Rightarrow & {\left[1+f^{\prime}(x) \frac{d c_{g}}{d_{k} t}\right] \frac{\partial k}{\partial t}=-f^{\prime}(x) c_{y} } \tag{1}\\
& \frac{\partial_{k}}{\partial \pi}=f^{\prime}(x)\left[1-\frac{d_{g} \partial k}{d_{k}} \frac{\partial x}{\partial x} t\right] \\
\Rightarrow & {\left[1+f^{\prime}(x) \frac{d c_{g}}{d k} t\right] \frac{\partial k}{\partial x}=f^{\prime}(x) } \tag{2}
\end{align*}
$$

Compore (I) und (2) $\frac{\partial_{k}}{\frac{1 t}{}}=-c_{g} \frac{\partial_{k}}{\partial x}$, as required.
Since $k=f(x-\operatorname{cg}(k) t)$, then k is constanc if $x=c_{p}(k) t=$ const. Thus k is constant along trujectories $\frac{d x}{d x}=c y$.
\Rightarrow nead tor travel ar speed e_{y} to beep seaing waver of wavenumber k.
(b) (i) Dispersion relationship is

$$
G k_{2}^{4}+k^{4} G=\rho \sigma^{2}
$$

or

$$
\omega^{2}=\frac{G}{\rho}\left(k^{4}+x^{4}\right)
$$

$$
\Rightarrow \quad 2 \omega \underset{\sim}{c}=\frac{\sigma}{\rho} 4 k^{2} k \Rightarrow c_{0}=\frac{2 G k^{2} k}{\rho \bar{\omega}} \Rightarrow g=2
$$

(b) (i) cont.

$$
\begin{aligned}
c_{p}=\left(\frac{\sigma}{k}\right) \frac{k}{k}=\frac{\sigma^{2} k}{\omega k^{2}} & =\frac{k}{\sigma k^{2}} \frac{G}{\rho}\left(k^{4}+k^{3}\right) \\
\left|c_{p}\right| & =\left(1+\frac{k^{4}}{k^{2}}\right) \frac{c^{2} k^{2} k}{\rho \omega} \quad f=1+\frac{k^{3}}{k^{3}}
\end{aligned}
$$

(ii) $f / g=\frac{1}{2}\left[1+x^{3} / k^{4}\right]$

There is only one k^{k} / x^{k} that ensures $f=y$ By inspection, this is $|k|=x$.
(iii) $\left|k_{2}\right| \wedge l^{-1}$ se $k \ell \ll 1 \Rightarrow \frac{k}{|k|} \ll 1 \Rightarrow \frac{|k|}{x} \gg 1$

From (b) (ii) above, $\left|k_{a}\right| \gg k \Rightarrow f<y \Rightarrow\left|e_{p}\right|<\left|e_{g}\right|$

Since $c_{g}>c_{p}$ new crests continully appear at the front of the wave packet, ripple through the packer, and dissapeer at the rear of the packet.

Version JSB/2

3 A cylindrical optical fiber has a refractive index, $n(r)$, that varies with radius. Using standard cylindrical coordinates, a light ray through the fiber follows a path $(r(z), \theta(z), z)$.
(a) Find a functional $T(r, \theta)$ for the time taken for a ray to travel from $z=A$ to $z=B$. [10\%] Length element in cylindrical coordinates is $\sqrt{d z^{2}+d r^{2}+r^{2} d \theta^{2}}$.
Speed $=$ distance/time, so integrating and pulling dz out of the square-root gives

$$
T=\int_{A}^{B} \frac{1}{c} n(r) \sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}} \mathrm{~d} z \equiv \int_{A}^{B} L\left(r, r^{\prime}, \theta^{\prime}\right) \mathrm{d} z
$$

(b) According to Fermat's principle, rays will follow paths that minimize T. Show that Fermat's principal leads to the following two equations

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\left(r(z)^{2} \theta^{\prime}(z)\right)=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{n(r)}{\sqrt{r^{\prime}(z)^{2}+r(z)^{2} \theta^{\prime}(z)^{2}+1}}\right)=0 .
$$

[Hint: Consider how the Beltrami special-case of the Euler-Lagrange equation works for a functional of two functions.]
We are minimizing T with respect to two functions, $\theta(z)$ and $r(z)$.
The integrand $L\left(r, r^{\prime}, \theta^{\prime}\right)$ does not depend on θ, so the standard E - L equation for $\theta(z)$ simply reads

$$
\frac{d}{d z} \frac{\partial L}{\partial \theta^{\prime}}=0 \rightarrow \frac{d}{d z}\left(\frac{n(r) r^{2} \theta^{\prime}}{\sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}}}\right)=0 .
$$

The integrand does depend on r, so this EL-equation is not so simple. However, L does not explicitly depend on z, so we may use the Beltrami manipulated form

$$
\begin{gathered}
\frac{d}{d z}\left(L-r^{\prime} \frac{\partial L}{\partial r^{\prime}}-\theta^{\prime} \frac{\partial L}{\partial \theta^{\prime}}\right)=0 \\
\frac{d}{d z}\left(n(r) \sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}}-\frac{n(r) r^{\prime 2}}{\sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}}}-\frac{n(r) r^{2} \theta^{\prime 2}}{\sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}}}\right)=0 \\
\frac{d}{d z}\left(\frac{n(r)}{\sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}}}\right)=0
\end{gathered}
$$

This is the second required equation. Combining it with the θ E-L equation gives $\frac{d}{d z}\left(r^{2} \theta^{\prime}\right)=0$, as required for the first.
Length element in cylindrical coordinates is $\sqrt{d z^{2}+d r^{2}+r^{2} d \theta^{2}}$.
Speed=distanceltime, so integrating and pulling $d z$ out of the square-root gives

$$
T=\frac{1}{c} \int_{A}^{B} n(r) \sqrt{1+r^{\prime 2}+r^{2} \theta^{\prime 2}} \mathrm{~d} z
$$

Version JSB/2

(c) What may be concluded about a ray that enters the fiber in an $r-z$ plane Integrating the two equations above, we get

$$
r(z)^{2} \theta^{\prime}(z)=c, \quad \frac{n(r)}{\sqrt{r^{\prime}(z)^{2}+r(z)^{2} \theta^{\prime}(z)^{2}+1}}=d
$$

where c and d are constants of integration. In this case $\theta^{\prime}=0$ on entry, so $c=0$, indicating that θ^{\prime} must remain zero throughout - i.e. the ray remains confined to this $r-z$ plane.
(d) Find the refractive index profile $n(r)$ that allows a helical ray at any radius. Set the constants of integration such that the helix at radius r_{0} progresses by $\Delta z=p$ in each turn.
A helix has constant $r(z)=r_{0}$, and constant $\theta^{\prime}(z)=2 \pi / p$.
Substituting for θ^{\prime} in the second equation of motion from the first gives:

$$
\frac{n(r)}{\sqrt{r^{\prime 2}+c^{2} / r^{2}+1}}=d .
$$

For $r^{\prime}=0$ to be a solution, we need

$$
n(r)=d \sqrt{1+c^{2} / r^{2}}
$$

The first equation of motion gives the value of c as

$$
r_{0}^{2} 2 \pi / p=c
$$

So we have

$$
n(r)=d \sqrt{1+4 \pi^{2} r_{0}^{4} /\left(p^{2} r^{2}\right)}
$$

The second constant, d, just scales the overall velocity, so it has no impact on the form of the minimum time paths.
(e) The profile is actually $n(r)=n_{0} /(1+\lambda r)$. Show a ray that enters directed in an $r-z$ plane will move in a circle.
The equation of motion simply gives $\theta^{\prime}=0$, i.e. the ray remains in the $r-z$ plane.
The second equation of motion becomes

$$
d_{2}=(1+\lambda r)^{2}\left(r^{\prime}(z)^{2}+1\right)
$$

where we have redefined the arbitrary constant $\left(n_{0} / d\right)^{2}=d_{2}$. Rearranging for r^{\prime},

$$
\frac{d r}{d z}=\sqrt{\frac{d_{2}}{(1+\lambda r)^{2}}-1}=\frac{\sqrt{d_{2}-(1+\lambda r)^{2}}}{(1+\lambda r)} .
$$

Version JSB/2

Dividing and integrating:

$$
\int \frac{(1+\lambda r)}{\sqrt{d_{2}-(1+\lambda r)^{2}}} \mathrm{~d} r=\int \mathrm{d} z=z+d_{3}
$$

The r.h.s integral is straightforward as the numerator is the derivative of the denominator,

$$
-\frac{1}{\lambda} \sqrt{d_{2}-(1+\lambda r)^{2}}=z+d_{3} .
$$

Squaring, we have

$$
\frac{d_{2}}{\lambda^{2}}=(1 / \lambda+r)^{2}+\left(z+d_{3}\right)^{2}
$$

which is the equation of a circle.

Version JSB/2

4 A light, inextensible cantilever of length L and bending stiffness B is clamped on the left and loaded with a point weight $m g$ on the right, resulting in a vertical downward deflection $y(x)$ as shown in Fig. 1. The elastic potential energy of the cantilever is proportional to its curvature squared which, for small deflections, we may take to be $E=\int_{0}^{L} \frac{1}{2} K y^{\prime \prime}(x)^{2} \mathrm{~d} x$.

Fig. 1
(a) The cantilever deformation minimizes the total potential energy. We first seek an approximate solution using the Rayleigh-Ritz method with a trial function of the form:

$$
y(x)=\sum_{i=0}^{N} a_{i}\left(\frac{x}{L}\right)^{i} .
$$

(i) Explain why a_{0} and a_{1} must be set to zero before starting the procedure.

For Rayleigh-Ritz, the trial function must obey the fixed (clamped) boundary conditions - in this case $y(0)=y^{\prime}(0)=0$, hence $a_{0}=a_{1}=0$.
(ii) Find the Rayleigh-Ritz approximate solution for $N=2$.

For $N=2$, we have $y(x)=a_{2}(x / L)^{2}$. Substituting this into the total energy

$$
E=\int_{0}^{L} 2 K a_{2}^{2} / L^{4} \mathrm{~d} x-m g a_{2}=2 K a_{2}^{2} / L^{3}-m g a_{2} .
$$

Minimizing w.r.t a_{2} gives

$$
m g=4 K a_{2} / L^{3} \rightarrow a_{2}=m g L^{3} /(4 K) .
$$

$N=2$ solution is

$$
y(x)=\frac{m g L}{4 K} x^{2} .
$$

(b) Use a directional derivative of the potential energy to find a differential equation for $y(x)$, and the appropiate boundary conditions.
Total potential energy is

$$
E=\int_{0}^{L} \frac{1}{2} K y^{\prime \prime}(x)^{2} \mathrm{~d} x-m g y(L) .
$$

Directional derivative w.r.t y in direction δ y gives

$$
D E(y) \delta y=\int_{0}^{L} K y^{\prime \prime} \delta y^{\prime \prime} \mathrm{d} x-m g \delta y(L) .
$$

Version JSB/2

Integrating by parts twice gives

$$
D E(y) \delta y=\int_{0}^{L} K y^{\prime \prime \prime \prime} \delta y \mathrm{~d} x+\left[K y^{\prime \prime} \delta y^{\prime}\right]_{0}^{L}-\left[K y^{\prime \prime \prime} \delta y\right]_{0}^{L}-m g \delta y(L) .
$$

At the $x=0$ boundary we have clamped conditions, so $\delta y(0)=\delta y^{\prime}(0)=0$, so these terms vanish in the directional derivative.

$$
\left.D E(y) \delta y=\int_{0}^{L} K y^{\prime \prime \prime \prime} \delta y \mathrm{~d} x+K y^{\prime \prime}(L) \delta y^{\prime}(L)\right]-K y^{\prime \prime \prime}(L) \delta y(L)-m g \delta y(L)
$$

For minimum energy we need the derivative to vanish for all deltay. This gives the equation

$$
K y^{\prime \prime \prime \prime}(x)=0
$$

And the boundary conditions $y^{\prime \prime}(L)=0, y^{\prime \prime \prime}(L)=-m g / K$. At $x=0$ we have clamped conditions $y(0)=y^{\prime}(0)=0$.
(c) Find the analytic solution $y(x)$, and discuss its relation to Rayleigh-Ritz solutions for $N=2,3,4$.
The equation integrates four times to give

$$
y(x)=a_{0}+a_{1} \frac{x}{L}+a_{2} \frac{x^{2}}{L^{2}}+a_{3} \frac{x^{3}}{L^{3}}
$$

Boundary conditions at $x=0$ give $a_{0}=a_{1}=0$.
Boundary conditions at $x=L$ give

$$
\begin{gathered}
2 a_{2}+6 a_{3}=0 \\
\frac{6 a_{3}}{L^{3}}=-m g / K \rightarrow a_{3}=\frac{-m g L^{3}}{6 K}
\end{gathered}
$$

Substituting above then gives $a_{2}=\frac{m g L^{3}}{2}$, and hence the form of the beam is

$$
y(x)=m g L^{3}\left(\frac{x^{2}}{2 L^{2}}-\frac{x^{3}}{6 L^{3}}\right)=\frac{m g x^{2}}{6 K}(3 L-x) .
$$

For $N=3$ and $N=4$ the RR trial function includes the exact answer, so it will give the exact result. For $N=2$ this is not true, so the $R R$ will be an approximate solution with higher energy.
(d) Alternativley, the deflection may be described by $\theta(s)$ the angle between the cantilever and the horizontal as a function of arc-length, as shown in Fig. 1. The elastic energy is now $E=\int_{0}^{L} \frac{1}{2} K \theta^{\prime}(s)^{2} \mathrm{~d} s$, and there is no assumption about small deflections.
(i) Find the differential equation for $\theta(s)$, and the appropiate boundary conditions. [20\%]
The vertical displacement of the end is now $y(L)=\int_{0}^{L} \sin (\theta) \mathrm{d}$ s, so the potential energy is

$$
E=\int_{0}^{L} \frac{1}{2} K \theta^{\prime}(s)^{2}-m g \sin (\theta(s)) \mathrm{d} s
$$

Taking the directional derivative with respect to θ in the direction $\delta \theta$ gives

$$
D E(\theta) \delta \theta=\int_{0}^{L} K \theta^{\prime}(s) \delta \theta^{\prime}-m g \cos (\theta) \delta \theta \mathrm{d} s
$$

Integrating by parts once,

$$
D E(\theta) \delta \theta=\int_{0}^{L}-K \theta^{\prime \prime} \delta \theta-m g \cos (\theta) \delta \theta \mathrm{d} s+\left[K \theta^{\prime} \delta \theta\right]_{0}^{L}
$$

At $s=0$ we have $\theta=0$ and hence $\delta \theta=0$, so this gives

$$
D E(\theta) \delta \theta=\int_{0}^{L}-K \theta^{\prime \prime} \delta \theta-m g \cos (\theta) \delta \theta \mathrm{d} s+K \theta^{\prime}(L) \delta \theta(L)
$$

Setting this to zero for all permitted $\delta \theta$ gives

$$
K \theta^{\prime \prime}+m g \cos (\theta)=0
$$

with the boundary conditions $\theta(0)=0$ and $\theta^{\prime}(L)=0$.
(ii) The cantilever deflects to a final angle $\theta(L)=\theta_{f}$. Find the value of $\theta^{\prime}(0)$. [20\%] The integrand of the energy does not depend on s, so we may use the Beltrami special form

$$
\frac{d}{d s}\left(\frac{1}{2} K \theta^{2}-m g \sin (\theta)-\theta^{\prime} K \theta^{\prime}\right)=0
$$

which we can integrate to get

$$
\frac{1}{2} K \theta^{\prime 2}+m g \sin (\theta)=c=m g \sin \left(\theta_{f}\right) .
$$

where the constant of integration has been fixed using the data at the r.h.s. At the lhs, we thus have

$$
\theta^{\prime}(0)=\frac{2 m g \sin \left(\theta_{f}\right)}{K} .
$$

END OF PAPER

