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1 (a) Consider the Poisson equation

∇2Φ = δ(x),

where δ(x) is the three-dimensional delta function, defined by

δ(x) = 0 for x , 0;
∫

V
δ(x)dV = 1,

and V is a spherical volume centered on the origin. Show that

Φ(x) = −
1

4π |x|

is the solution to this Poisson equation, in the sense that

∇2Φ = 0 for x , 0;
∫

V
∇2ΦdV = 1.

[25%]

(b) Use superposition, plus the results of part (a) above, to deduce the solution to the
Poisson equation

∇2Φ = S(x),

where S(x) is a general source term. [20%]

(c) A static magnetic field, B, has a vector potential, A, defined by ∇ · A = 0 and
∇ × A = B . This vector potential is related to the current density vector, J(x), by

∇2A = −µ0J(x),

where µ0 is the permeability of free space. Use the results of part (b) above to show that,
in an infinite domain,

B(x) = ∇ × A(x) =
µ0
4π

∫
∇ ×

[
J(x′)
|x − x′|

]
dV ′,

where ∇ operates on x while treating x′ as constant. Hence deduce the Biot-Savart law,

B(x) =
µ0
4π

∫
J(x′) × r
|r|3

dV ′, r = x − x′.

[35%]
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(d) For a quasi-static magnetic field, B(x, t), which varies slowly with time, the Biot-
Savart law is usually written as,

B(x, t) =
µ0
4π

∫
J(x′, t) × r
|r|3

dV ′, r = x − x′.

Explain why, given the finite speed of light, this cannot be strictly correct. How would
you modify the quasi-static equation

B(x, t) =
µ0
4π

∫
∇ ×

[
J(x′, t)
|x − x′|

]
dV ′,

to allow for the finite speed of light? Explain your physical reasoning. [20%]
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2 (a) A slowly modulated wave train takes the form

η(x, t) = A(x, t)exp [iθ(x, t)] ,

where A is the local amplitude and θ the phase function. At any one location a good
approximation to the wave train is

η(x, t) = Aexp [i(k x −$t)] ,

where k (x, t) and $(x, t) are the local values of the wavenumber and angular frequency,
which are constrained to satisfy the dispersion relationship $ = $(k).

(i) Express k and $ in terms of the phase function and hence show that k is
governed by the simple equation

∂k
∂t
+ cg (k)

∂k
∂x
= 0,

where cg (k) is the group velocity. [20%]

(ii) Show that the solution of this equation takes the functional form

k = h
(
x − cgt

)
, where cg itself is a function of k,

and use this to deduce the fundamental property of group velocity for one-
dimensional dispersive systems. [30%]

(b) A thin metal plate sits on an elastic foundation. The plate has a mass per unit area
of ρ and a flexural rigidity of G. The stiffness of the foundation can be written as κ4G and
transverse vibrations of the plate are governed by

G∇2
(
∇2η

)
+ κ4Gη + ρ

∂2η

∂t2
= 0,

where η is the the lateral displacement of the plate.

(i) Show that the phase and group velocities can be written as

cp = f
(
k4/κ4

) Gk2k
ρ$

, cg = g
(
k4/κ4

) Gk2k
ρ$

where k and $ are the wavevector and frequency, respectively, and f and g are
functions of k4/κ4. Find the functions f and g. [20%]

(ii) Sketch the ratio f /g as a function of k4/κ4, and show that the phase and group
velocities have equal magnitudes only when |k| = κ. [10%]

(iii) The plate is struck by an object of scale ` where κ` � 1 , and waves propagate
radially outward from the point of impact. Sketch the form of the resulting wave
pattern, showing the motion of the wave crests relative to the overall motion of the
wave packet. [20%]
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3 A cylindrical optical fiber has a refractive index, n(r), that varies with radius.
Expressed in standard cylindrical coordinates, a light ray through the fiber follows a path
(r (z), θ(z), z).

(a) Find a functional T (r, θ) for the time taken for a ray to travel from z = A to z = B. [10%]

(b) According to Fermat’s principle, rays will follow paths that minimize T . Show that
Fermat’s principal leads to the following two equations [30%]

d
dz

(
r (z)2θ′(z)

)
= 0,

d
dz

*
,

n(r)√
r′(z)2 + r (z)2θ′(z)2 + 1

+
-
= 0.

[Hint: Consider how the Beltrami special-case of the Euler-Lagrange equation works for
a functional of two functions.]

(c) What may be concluded about a ray that enters the fiber in an r − z plane. [10%]

(d) Find the refractive index profile n(r) that allows a helical ray at any radius. Set the
constants of integration such that the helix at radius r0 progresses by ∆z = p in each turn. [20%]

(e) The profile is actually n(r) = n0/(1 + λr). Show a ray that enters directed in an
r − z plane will move in a circle. [30%]
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4 A light, inextensible cantilever of length L and bending stiffness B is clamped on
the left and loaded with a point weight mg on the right, resulting in a vertical downward
deflection y(x) as shown in Fig. 1. The elastic potential energy of the cantilever is
proportional to its curvature squared which, for small deflections, we may take to be
E =

∫ L
0

1
2K y′′(x)2dx.

m
y(x)

θ(s)

x0 L g

Fig. 1

(a) The cantilever deformation minimizes the total potential energy. We first seek an
approximate solution using the Rayleigh-Ritz method with a trial function of the form:

y(x) =
N∑

i=0
ai

( x
L

)i
.

(i) Explain why a0 and a1 must be set to zero before starting the procedure. [5%]

(ii) Find the Rayleigh-Ritz approximate solution for N = 2. [15%]

(b) Use a directional derivative of the potential energy to find a differential equation for
y(x), and the appropiate boundary conditions. [25%]

(c) Find the analytic solution y(x), and discuss its relation to Rayleigh-Ritz solutions
for N = 2, 3, 4. [15%]

(d) Alternativley, the deflection may be described by θ(s) the angle between the
cantilever and the horizontal as a function of arc-length, as shown in Fig. 1. The elastic
energy is now E =

∫ L
0

1
2Kθ′(s)2ds, and there is no assumption about small deflections.

(i) Find the differential equation for θ(s), and the appropiate boundary conditions.
[20%]

(ii) The cantilever deflects to a final angle θ(L) = θ f . Find the value of θ′(0). [20%]

END OF PAPER
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