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3.

(a)

Lagrangian:
1
L(x,\) = §xTC'1: — b+ (AN Tz — A\Tf

where A € R™.
Stationarity:
L
oL =Cr—-b+AXN=0
Ox
oL
—_— = AT — =
o xr—f=0
In matrix form,
C Al x| _|b
AT Of (A f

The first row Cz+AX = b, leading to z = C~1(b— A\). For the second row, ATz = f
Inserting the expressions for z, ATC7'(b — A\) = f which gives —ATC71AN =
f — ATC='b. The solvability requirement is that A is full rank so that ATC~'A4 is
invertible.

If we maximise L over A,

%xTC’x —b'y if ATx=f

00 otherwise

p(x) == m/exL(:r,/\) = {

From L(z,\) = 327 Cx — bTa + (AN) T2z — AT},

a—L:Cx—b—l—A)\:O
ox

which requires z = C~1(b — A)). Inserting this into L, gives g:
1
g(\) = —é(b — ANTCTHb— AN) = M f

Minimising Lyax, is equivalent to minimising 27 Cz — b'x subject to ATx = f.
The solution to our problem therefore involves maximising L with respect to A and
minimising it with respect to z. A saddle point is a maximum in one direction and
a minimum in the other.

Lagrangian is unchanged,
1
L(z,\) = §$T0x —b'r + AT (Ax — f)

but we now require that \; > 0. This means that A ‘penalises’ violations of the
inequality constraint.



11.

i [V Xxulp = eklm%‘TT, therefore [V x V xu|; = ewkai (€kim i

Oum

8um) EZ]keklmai (3_:”)

Oum, Oum

Applylng the Eijkféij 1dent1ty, €ijk€kim 82’ ( oz, ) = 5jm%(7)—(5im(s]lam ( Dy ) =
5 (5) = 55 (52) = V(V - u) = V- (Vu).

Bacj 8%1 8xj aa:j

Taking the curl of the VxEterm,VXVXE:V(V-E)—V-(VE) V-(VE)

(since E is divergence-free). Where therefore have V - (VE) = (V X B) =
’E

HEe -

We therefore have the Vector wave equation pe%L atQ =V - (VE). Following the
same process for B yields peZ2 tg =V -(VB)

. 0 1o}
: ai €ijkPjUr = Eijk a(i) U +€jkQ; axk = Ckij aﬁ U —€jikP; amk = u(Vx¢)=¢-(Vxu).
. Introducing v := V X u, we have

/w-(va)dQ+/w~audQ—/w~fdQ
Q Q Q

Note that

/Qw-(VXU)dQ:—/QV-(wXU)dQ+/v-(V><w)dQ

Q
Applying divergence theorem,

/Qw-(va)dQ:—/aQ(wxv)-nerr/v-(va)dQ

Q

:_/m@-mxw)dufu-(va)dQ

Q

The weak form is therefore

/Q(qu)~(V><w)dQ+/

au~wdQ:/f-wdQ
Q )

iii. From the result in (i), we have

GNW, v0

/Q(qu)-@bdﬁz/ﬂu-(dez)dQ—/QV-(@/un)dQ
:/slu.(wa)dQ—Zi:fgi(wxu)~ndF
:/Qu.(vxw)dﬂ—zi:/&w«(nxu)df

which requires that the tangential components of v must be continuous across
surfaces. The normal component across surfaces may be discontinuous.



