
Crib

4M12 2021, JSB/2











3 A surface is given by z(r,θ) = r cotα , where r−θ − z are cylindrical coordinates
and 0 < α < π/2 is a constant.

(a) Sketch the surface, and give a geometrical interpretation of α . [10%]

There is no θ dependence, so this is a surface of revolution. We have z ∝ r so the surface
is a straight line in the r− z plane, i.e. the surface is a cone. The constant α is the half
angle of the cone.

(b) Find an expression for the length of the path along the surface described by the
function r = f (θ), starting from θ1 and finishing at θ2. [20%]

In cylindrical coordinates, the infinitesimal path length (by Pythagorus) is

dl =
√

dr2 +dz2 + r2dθ 2.

Along our path, we have r = f (θ), z = f (θ)cotα , giving

dl =
√

d f 2 +d f 2 cot2 α + f 2dθ 2.

Integrating along the path, and pulling dθ out of the square root, we get the total length

l =
∫

θ2

θ1

√
(1+ cot2 α) f ′2 + f 2dθ

=
∫

θ2

θ1

√
f ′2 csc2 α + f 2dθ .

(c) Using the Beltrami identity, or otherwise, show that f will extremise the path length
if the quantity [30%]

f 2√
f 2 + csc2(α) f ′2

= 0



is constant along the path.

We wish to exremise l over variations in f (θ). We note that the integrand F =√
f ′2 csc2 α + f 2 does not depend on explicitly on θ so, rather than use the usual Euler-

Lagrange equation, we use the Beltrami modified form.

−∂F
∂θ

+
d

dθ

(
F− f ′

∂F
∂ f ′

)
= 0.

The first term vanishes, and the term in brackets evaluates to

F− f ′
∂F
∂ f ′

=

√
f ′2 csc2 α + f 2− f ′

f ′ csc2 α√
f ′2 csc2 α + f 2

=
f 2√

f ′2 csc2 α.+ f 2

The condition for extreme path length is thus simply

d
dθ

(
f 2√

f ′2 csc2 α + f 2

)
= 0.

which does indeed imply that the quantity in brackets is constant along the path.

(d) Find and sketch the shortest path along the surface from (r,θ) = (r0,−β ) to (r0,β ),
and show that the minimum value of r along this path is [40%]

rmin = r0 cos(β sin(α)).

Integrating our equation once gives:

f 2√
f ′2 csc2 α + f 2

= c1.

Rearranging this equation for f ′ gives

f ′ = sinα

√
f 4/c2

1− f 2.

We can now divide by
√

f 4− c2
1 f 2 and integrate a second time to get∫ 1√
f 4/c2

1− f 2
d f = (θ −θ0)sinα.

Using the hint, the integral on the left gives

sec−1 ( f/c1) = (θ −θ0)sinα,

which we can solve for f to get

f = c1 sec((θ0−θ)sinα).



We must use the end points to fix c1 and θ0. From symmetry, we expect rmin at θ = 0.
This occurs when the argument of sec is 0, so we set θ0 = 0 giving

f = c1 sec(θ sinα).

Finally, we need f = r0 at θ =±β , requiring c1 = r0 cos(β sinα). The full path is thus

f = r0 cos(β sinα)sec(θ sinα)

and the closest approach is at θ = 0, where f = r0 cos(β sinα).



4 (a) Consider the following equation for u(x), which is to be solved for 0 < x < 1,

d4u
dx4 +

2
x

d3u
dx3 = 0,

u(0) = 0, u′(0) = 0

u(1) = 0, u′(1) = 0.

(i) Find a weak form of the equation, and explain why it is not possible to deduce
a variational form. [20%]
We multiply by an arbitrary weight function w(x), with w(0) = w(1) = w′(0) =
w′(1) = 0, and integrate over the domain.

∫ 1

0
wu′′′′+2wx−1u′′′dx = 0

Integrating the first term by parts twice and the second term by parts once gives the
form with the lowest order derivatives:∫ 1

0
w′′u′′−2w′x−1u′′+2wx−2u′′dx = 0

All boundary terms vanish due to the boundary conditions on w. This is not
symmetric in w and u, so we cannot deduce a variational form.

(ii) Multiply the original equation by x, find the new weak form, and hence find
an equivalent variational form. [20%]
The new equation is

xu′′′′+2u′′′ = 0.

We again multiply by an arbitrary weight function and integrate over the domain.

∫ 1

0
wxu′′′′+2wu′′′dx = 0

Integrating the first term by parts twice and the second onece gives

∫ 1

0
−w′xu′′′−wu′′′−2w′u′′dx = 0

∫ 1

0
w′′xu′′+w′u′′+w′u′′−2w′u′′dx = 0

∫ 1

0
w′′xu′′dx = 0

This is symmetric, and is the directional derivative Dxu′′u′′(u)[w]. Solving the
original equation is thus equivalent to extremising

∫ 1
0 x(u′′)2dx.



(b) Anna has recently completed her engineering degree, and is making financial plans.
She starts her career with no savings, S(0) = 0, but in forty years time she will need
S(40) = SF to retire comfortably. Fortunately Anna secures a good job, which provides a
constant income I. She also invests her savings, S, in an account paying an interest rate
r, (generating an additional income rS) and consumes (spends) at a rate C(t), such that,
overall, her savings grow as

Ṡ = rS+ I−C.

(i) Show that Anna’s savings target is equivalent to the integral constraint [20%]

∫ 40

0
er(40−t)(I−C(t))dt = SF .

We have the differential equation

Ṡ− rS = I−C(t).

Using an integrating factor, with P(t) =−r and Q(t) = I−C, and
∫

P(t)dt =−rt.

d
dt

(
Se−rt)= (I−C(t))e−rt .

Integrating both sides with respect to t, we have

S(t)e−rt =
∫ t

0
(I−C(t))e−rtdt + c1.

The initial condition S(0) = 0 sets c1 = 0, while S(40) = SF then gives

SFe−40r =
∫ 40

0
(I−C(t))e−rtdt → SF =

∫ 40

0
(I−C(t))er(40−t)dt.

(ii) Anna wishes to pace her consumption (spending), C(t) over her career in
order to maximize her utility while still hitting her retirement savings target. To do
this, she decides to maximize the quantity

U =
∫ 40

0
log(C/C0)dt

where C0 is a (constant) level of spending required for basic subsistence. where
C0 is a (constant) level of spending required for basic subsistence. Show that, to
maximize U while meeting her retirement savings target, Anna should choose C(t)
of the form

C(t) =
1
λ

er(t−40),

and find an expression for the constant λ [40%]



Introducing the Lagrange multiplier λ leads us to the modified functional

Ũ =
∫ 40

0
log(C/C0)+λ

(
er(40−t)(I−C)−SF/40

)
dt.

Taking the directional derivative with respect to C, we get

DŨ(C)[v] =
d

dε

∫ 40

0
log((C+εv)/C0)+λ

(
er(40−t)(I− (C+ εv))−SF/40

)
dt
∣∣∣∣
ε=0

= 0.

Which evaluates to: ∫ 40

0

v
C
+λ

(
er(40−t)v

)
dt = 0.

Since this quantity must vanish for all v, we get the condition

1
C
−λ

(
er(40−t)

)
= 0

which we solve for C to get

C =
1
λ

er(t−40).

To fix the value of λ , we substitute this form into the constraint,∫ 40

0
er(40−t)

(
I− 1

λ
er(t−40)

)
dt = SF .

∫ 40

0

(
Ier(40−t)− 1

λ

)
dt = SF .

I
r

(
e40r−1

)
− 40

λ
= SF → 1

λ
=

I
40r

(
e40r−1

)
− SF

40
so the final answer is

C(t) =
(

I
40r

(
e40r−1

)
− SF

40

)
er(t−40).



Examiners comments. Statistics refer to the IIB cohort.
Q1. 37 attempts, mean 13.11, std 4.32. This question is on Green’s function

solutions and their relationship to the Biot-Savart law and to retarded potentials. It was
attempted by all candidates and the results were a little disappointing. Some candidates
struggled with the basic vector calculus required for the question.

Q2. 33 attempts, mean 14.91, std 2.89. This question was on dispersive waves, wave
packets and the concept of group velocity. It was attempted by all but 4 candidates and
the results were gratifying. Most candidates displayed a clear grasp of the fundamental
ideas of group velocity and wave packets.

Q3. 18 attempts, mean 15.50, std 4.74. Least popular question, but done well.
Almost all candidates identified the conical surface. Most candidates could also find an
expression for the path length though many failed to include dz2. Part (c) was uniformly
well answered. However, many marks were dropped in (d), either during solving the
differential equation, or applying the boundary conditions. Surprisingly few candidates
finished with a diagram of a geodesic on a cone.

Q4. 24 attempts, mean 12.38 std 3.93. Fairly popular question and mostly done
well. Candidates scored well in (a) (week form) though marks were lost for failing
to discuss boundary conditions, and for answers containing third derivatives. (bi) was
quite poorly answered, despite being amenable to a simple integrating factor or a Laplace
transform. (bii) was well answered, with almost all candidates introducing a Lagrange
multiplier, and little confusion being caused by the integral depending on C(t) but not its
derivatives. However, fairly few candidates persisted to the end of (bii), and found the
value of the Lagrange multiplier.


