
4M16 2021  Final crib (gtp10) 

1 

Q1 

(a) The decay reaction is 

€ 

94
238Pu→ 94−2

238−4X + 2
4He  

  

€ 

∴ A = 234 and Z = 92  

 So, the daughter product is 

€ 

92
234U .  [5%] 

(b) For the reaction 

€ 

9Be + 4He→ 12C + n  

  

€ 

Δu = 9.01219+ 4.00260 −12.00000 −1.00867 = 6.12×10−3 u 

  

€ 

∴ Energy released = 6.12×10−3 × 931.5016 = 5.701 MeV 

 Assuming the neutron receives all this energy plus the energy of the α, the maximum neutron 
energy is 

  

€ 

5.701+ 5.593=11.294 MeV [10%] 

(c)  Sj
dt
dn

+−+−∇= φΣη a)1(.  

 Steady-state: 
    

€ 

∴
dn
dt

= 0  

 Fick’s Law:   

€ 

j = −D∇φ  

  

€ 

∴ 0 = −∇.(−D∇φ)+ (η−1)Σaφ + S  

 As the system is uniform, it can be assumed that D is constant and the reactor is homogeneous 

  

€ 

∴ 0 = D∇2φ + (η−1)Σaφ + S  

  

€ 

∴ ∇2φ +
(η−1)Σa

D
φ = −

S
D

 

 For a spherical geometry uniform reactor, the Laplacian 

€ 

∇2 =
1
r2

d
dr

r2 d
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  

€ 

∴
1
r2

d
dr

r2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
(η−1)Σa

D
φ = −

S
D

 [20%] 

(d) 
(i) The complementary function solves 

  

€ 

1
r2

d
dr

r2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
(η−1)Σa

D
φ = 0 

 Now 

€ 

1
r2

d
dr

r2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
r2

r2 d
2φ

dr2
+ 2r dφ

dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

d2φ
dr2

+
2
r
dφ
dr

 

  

€ 

∴
d2φ
dr2

+
2
r
dφ
dr

+
(η−1)Σa

D
φ = 0  

 If 

€ 

ψ = φr , then 

€ 

dψ
dr

= φ + r dφ
dr
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€ 

∴
d2ψ
dr2

=
dφ
dr

+
dφ
dr

+ r d
2φ

dr2
= r d

2φ

dr2
+ 2 dφ

dr
 

  

€ 

∴
d2φ
dr2

+
2
r
dφ
dr

=
1
r
d2ψ
dr2

 

  

€ 

∴
1
r
d2ψ
dr2

+
(η−1)Σa

D
ψ
r

= 0  

 Let 
    

€ 

B2 =
(η −1)Σa

D
 

€ 

∴
d2ψ
dr2

+ B2ψ = 0  

 This is an SHM equation, so the general solution is 
  

€ 

ψ = Asin(Br)+C cos(Br)  

  

€ 

∴ φcf =
A
r
sin(Br)+ C

r
cos(Br) [25%] 

(ii) Considering 

€ 

1
r2

d
dr

r2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
(η−1)Σa

D
φ = −

S
D

 

 As the source S is uniform, the particular integral is, by inspection: 

  

€ 

φpi = −
S

(η−1)Σa
 

 Thus, the general solution is 

  

€ 

φ = φcf + φpi =
A
r
sin(Br)+ C

r
cos(Br)− S

(η−1)Σa
 

 On physical grounds 

€ 

φ  must be finite at     

€ 

r = 0 , so     

€ 

C = 0 . 

  

€ 

∴ φ =
A
r
sin(Br)− S

(η−1)Σa
 

 With the boundary condition that   

€ 

φ = 0  at   

€ 

r = R+  

  

€ 

A
R+ sin(BR

+ )− S
(η−1)Σa

= 0 ⇒ A =
SR+

(η−1)Σa sin(BR
+)

 

  

€ 

∴ φ =
1
r

SR+

(η−1)Σa sin(BR
+)
sin(Br)− S

(η−1)Σa
 

  

€ 

∴ φ =
S

(η−1)Σa
R+

r
sin(Br)
sin(BR+ )

−1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  [30%] 

(iii) When 

€ 

BR+ = π , the flux becomes infinite because   

€ 

sin(π) = 0 . At this point the sphere 
becomes critical – it is able to sustain a steady-state flux distribution without an independent 
source.  [10%] 

 

Assessor’s Comments: 
All candidates: 87 attempts, Average raw mark 14.3/20, Maximum 19, Minimum 8. 
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A very popular question attempted by 96% of candidates and generally done quite well. 
Answers to part (a) revealed a lack of familiarity with the content of the 4M16 data sheet among 
candidates. 
The most common mistakes in part (b) were neglect of the energy of alpha and/or the mass of 
neutron in calculations. 
Many candidates lost marks in part (c) as a result of not stating their assumptions. 
A surprising number of candidates could not recognize the SHM equation. Others failed to seek the 
particular integral and tried to get the complementary function alone to fit the boundary conditions. 
There was also confusion between the particular integral for the φ and ψ forms of the diffusion 
equation. 
Several candidates incorrectly eliminated the sin term on grounds on symmetry. 
Very few candidates correctly recognized the achievement of criticality when BR+ reaches a value 
of π. 

 
Q2 

(a) The sinusoidal term reflects the variation in the coolant temperature along the channel. This 
depends on the total amount of heat transferred from the fuel and thus an integral of the 
cosinusoidal power distribution. 

 The cosinusoidal term reflects the temperature difference between the coolant and the location 
in question. This depends on the total thermal resistance and the local power density, which 
varies cosinusoidally.  [15%] 

(b) From the 4M16 data sheet 

€ 

θ =
T −Tc1 2

Tco −Tc1 2
sin πL

2 ʹ L 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 As L =   

€ 

ʹ L  

€ 

∴ θ =
T −Tc1 2
Tco −Tc1 2

⇒ θmax =
Tmax −Tc1 2
Tco −Tc1 2

 

 Noting that, by symmetry, 

€ 

Tco −Tc1 2 = Tc1 2 −Tci  

  

€ 

∴ θmax Tc1 2 −Tci[ ] = Tmax −Tc1 2
 

  

€ 

∴ Tc1 2 =
Tmax +θmaxTci
1+θmax

 [15%] 

 (c) Coolant exit temperature 
 

€ 

Q = 0 ⇒ θmax =1 

 Coolant entry temperature 

€ 

Tci = 330°C   

 Coolant exit temperature 

€ 

Tco = 650°C 

 

€ 

∴ Coolant mid-channel temperature 

€ 

Tc1 2 = 1
2 Tci +Tco[ ] = 1

2 330 + 650[ ] = 490°C (5%) 

 Cladding temperature 

 The cladding temperature will be greatest at its interior surface. 
 Using the formula on page 8 of the 4M16 data sheet: 
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€ 

1
U

=
1
h

+
tc
λc

=
1
200

+
10−3

16
= 0.0050625  

  

€ 

∴ U =197.53WK−1m−2  

 Also, from page 8 of the 4M16 data sheet, 

€ 

Q =
π ˙ m cp

UA
L
ʹ L 
 and 

€ 

A = 4πroL  

 Here L =   

€ 

ʹ L  = 4 m and 

€ 

ro = ri + tc = 7 ×10−2 +1×10−3 = 7.1×10−2 m 

  

€ 

∴ Q =
π ˙ m cp

U4πro L
=

˙ m cp

U4ro L
=

0.5 × 0.82 ×103

U × 4 × 7.1×10−2 × 4
=

360.915
U

 

 So, in this case, 

€ 

Q =
360.915
197.53

=1.827 

  

€ 

∴ θmax = 1+Q2 = 1+1.8272 = 2.083 

 Using the result from (b), for the limiting cladding temperature, 

  

€ 

Tc1 2 =
Tmax +θmaxTci
1+θmax

=
900+ 2.083× 330

1+ 2.083
= 514.9°C (30%)

 
 Fuel temperature 

 The fuel temperature will be greatest at its centre. 

  

€ 

∴
1
U

=
1
h

+
tc
λc

+
ro
hbri

+
ro
2λ f

=
1
200

+
10−3

16
+

7.1×10−2

2 ×103 × 7 ×10−2
+
7.1×10−2

2 × 3
= 0.017403 

  

€ 

∴ U = 57.46WK−1m−2
 

  

€ 

∴ Q =
360.915
57.46

= 6.281
 

  

€ 

∴ θmax = 1+Q2 = 1+ 6.2812 = 6.360  

  

€ 

∴ Tc1 2 =
Tmax +θmaxTci
1+θmax

=
1500 + 6.360 × 330

1+ 6.360
= 489.0°C  (25%)

 
 Thus, the fuel temperature constraint is (just) the most limiting. 

 
The channel power

 

€ 

P = ˙ m cp Tco − Tci[ ] = 2 ˙ m cp Tc1 2 −Tci[ ]  

  

€ 

∴ P = 2 × 0.5 × 0.82 ×103 489 − 330[ ] =130380W = 0.130 MW  (10%) [70%] 

 

Assessor’s Comments: 
All candidates: 66 attempts, Average raw mark 12.9/20, Maximum 20, Minimum 1. 
A reasonably popular question attempted by 72.5% of candidates. 
Part (a) was answered surprisingly poorly. Few candidates showed a convincing understanding of 
the origins of the form of Ginn’s equation. 
Unsuccessful efforts to answer part (b) usually failed to note and exploit the form of the coolant 
temperature distribution, meaning the temperature at mid-channel is just the average of inlet and 
outlet temperatures. 
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Answers to part (c) frequently went astray due to incorrect calculations of U: in some instances, the 
appropriate terms were excluded rather than included; in others, candidates did not show the values 
substituted in reaching wrong numerical answers, making it difficult to allocate partial credit.  
Several candidates failed to appreciate that the maximum cladding temperature would occur on the 
inside surface of the cladding.  
Other candidates tried to use the same values of U and Q for all three limiting cases.  
Finally, a number of candidates failed to appreciate that the case with the lowest mid-channel 
temperature would be the limiting one. 

 

Q3 
(a) Many fission products are unstable. Some decay by neutron emission. Unlike the neutrons 

emitted promptly in fission, these neutrons are emitted some time after the fission reaction 
that produced the relevant fission product (at a time dependent on the decay constant of the 
fission product in question). These neutrons are in consequence known as delayed neutrons. 

 Delayed neutrons have a very significant, beneficial effect on reactor dynamics. They increase 
the average neutron lifetime and hence lengthen the dominant time constant governing the 
dynamic behaviour of the neutron population. [15%] 

(b) The major simplifications of this model are that it assumes there is no spatial variation in 
behaviour, whereas, in practice, the reactor core is highly heterogeneous and the neutron 
population varies spatially, and it also assumes that there is only one type of precursor, 
whereas in reality there are a large number of them with widely varying production rates and 
half-lives.  [10%] 

(c) In steady-state operation 
    

€ 

dc
dt

= 0 

  

€ 

∴
β
Λ
n0 = λc0 ⇒

c0
n0

=
β
λΛ

=
0.007

0.1× 5 ×10−4
=140  [10%] 

(d)   

€ 

ρ = p Λ +
β

(p + λ )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⇒ ρ (p + λ ) = p Λ (p + λ )+β[ ]

 

   

€ 

∴
ρ
Λ
(p + λ ) = p2 + p λ +

β
Λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⇒ p2 + p λ +

β − ρ
Λ

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−
ρλ
Λ

= 0  

   

€ 

∴ p2 + p 0.1+
0.007 − 0.001
5 ×10−4

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−
0.001× 0.1
5 ×10−4

= 0  

   

€ 

∴ p2 +12.1p − 0.2 = 0 ⇒ p = 0.0165 or −12.1165 s−1 

 Hence the dominant time constant 

€ 

T+ =
1
p+

=
1

0.0165
= 60.6 s   [15%] 

(e) In the prompt jump approximation, the neutron population is assumed to stay in equilibrium 

with the precursor population. So, if 

€ 

dn
dt

= 0 for a source-free reactor (

€ 

s = 0) 

   

€ 

ρ −β
Λ

n+λ c = 0 ⇒ n =
λΛ
β −ρ

c
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 Substituting for n 

€ 

dc
dt

=
βλ
β −ρ

c−λ c =
ρλ
β −ρ

c
 

   

€ 

∴
dc
c

=
ρλ
β −ρ

dt ⇒ lnc =
ρλ
β −ρ

t + const ⇒ c = Aexp ρλ
β −ρ

t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 With a boundary condition that 

€ 

c = c0  at 

€ 

t = 0 , then 

   

€ 

c = c0 exp
ρλ
β −ρ

t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  [20%] 

(f) 

(i)   

€ 

dρ
dp

= Λ +
β

(p + λ )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − p

β

(p + λ )2
 

   

€ 

∴
dρ
dp

= Λ +
β

(p + λ )
1− p
(p + λ )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = Λ +

βλ

(p + λ )2
 

   

€ 

∴
dρ
dp p=0

= Λ +
β
λ

= 5 ×10−4 +
0.007
0.1

= 0.0705  

   

€ 

∴ p+ ≈
ρ

0.0705
=
0.001
0.0705

= 0.0142 s−1 

   

€ 

∴ T+ =
1
p+

=
1

0.0142
= 70.5 s 

 which is a reasonable approximation of the result for the dominant time constant in (d), but 
not a conservative one as the time constant is overestimated. 

(ii) In the prompt jump approximation, the neutron population is assumed to stay in equilibrium 
with the precursor population, so, from the result in (e), the dominant time constant will be 

   

€ 

T+ =
β −ρ
ρλ

=
0.007 − 0.001
0.001× 0.1

= 60 s  

 which is a very good (and slightly conservative) estimate. 

(iii) With no delayed neutrons 

€ 

dn
dt

=
ρ
Λ
n

 

 
So 

€ 

T+ =
Λ
ρ

=
5×10−4

0.001
= 0.5 s  

 Thus, delayed neutrons make the dominant time constant ×121 longer, making the reactor 
considerably more controllable.  [30%] 

 
Assessor’s Comments: 
All candidates: 88 attempts, Average raw mark 14.2/20, Maximum 20, Minimum 3. 
The most popular question, attempted by 97% of candidates, and generally done quite well, 
although part (e) was skipped entirely by a surprising number of candidates. 
Marks were often lost due to sloppy working, inadequately detailed comments and inadequately 
justified steps/approximations rather than lack of knowledge of how to approach delayed neutron 
kinetics analysis. 
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Some candidates incorrectly thought that a negative inverse period was impossible, rather than just 
not being associated with the dominant time constant. 
Several candidates calculated the gradient in part (f)(i) correctly but did not find the associated time 
constant correctly. 
In commenting on the significance of the time constant comparisons, many candidates failed to 
discuss the conservatism of the approximations. 
There was also some confusion between the notion of supercriticality and the speed of response 
when the reactor is supercritical. 

 

Q4 
(a) Separative work is the unit in which enrichment is traded and is defined as 

  

€ 

S = Ew 2xw −1( ) ln xw
1− xw

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +Ep 2xp − 1( ) ln

xp
1− xp

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −Ef 2xf − 1( ) ln

xf
1 − xf

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 where 

€ 

Ei  and 

€ 

xi  are the total mass and concentration of the feed 

€ 

(i = f ), product 

€ 

(i = p) and 
waste 

€ 

(i =w) , respectively. 

 The approximation to 

  

€ 

S = Ew − ln(xw)[ ] +Ep − ln( xp)[ ] −Ef − ln( xf )[ ]  

 is generally valid for civil reactors where the enrichment is low. 
 S increases as the enrichment required (

€ 

xp) increases and the tails concentration (

€ 

xw) 
decreases. Since the enrichment is dictated by reactor physics and the feed concentration (

€ 

xf ) 
by nature, the only variable is the tails concentration. The lower the tails concentration the 
greater the SWU required but less feed (

€ 

Ef ) will be needed, so the optimal tail concentration 
depends on the ratio of the uranium price and the cost of a SWU. When the uranium price is 
high it may be worth spending more on SWUs to reduce the feed requirements, and the 
reverse is true when the SWU price is high.  [25%] 

(b) 

(i)  

€ 

Pe =ηPth ⇒ Pth =
Pe
η

=
1200
0.3

= 4000 MW 

 ∴  Annual thermal output 

€ 

Eth = 4000× 365× 0.9 =1.314 ×106 MWd  

 ∴  Annual fuel requirement 

€ 

P =
Eth
B

=
1.314 ×106

40
= 32.85×103 kgU = 32.85 te  [10%] 

(ii) Considering mass balance across the enrichment plant at 0.3% tails 

 Uranium 

€ 

F = P+W  

 

€ 

235U  

€ 

xf F = xpP+ xwW  

  

€ 

∴ xf (P+W ) = xpP+ xwW  

  

€ 

∴ W ( xf − xw) = P( xp − xf ) 

  

€ 

∴ W = P
( xp − xf )
( xf − xw)

= 32.85 0.04 − 0.007
0.007 − 0.003

= 271.01 te  
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€ 

∴ F = P+W = 32.85+ 271.01= 303.86 te 

 As UOC is 95% U, the total mass of UOC needed 

  

€ 

Muoc =
F
0.95

=
303.86
0.95

= 319.85 te  [15%] 

(iii)  

€ 

S =W − ln(xw)[ ] +P − ln( xp)[ ] −F − ln( xf )[ ]  

  

€ 

∴ S = 271.01 − ln(0.003)[ ] +32.85 − ln(0.04)[ ] −303.86 − ln(0.007)[ ]  

  

€ 

∴ S =172.37 teSWU  

  

€ 

Cost =CuocMuoc +CswuS  

  

€ 

∴ Cost = 40× 319.85×103 + 50×172.37×103 = $21.413×106  [15%] 

(iv) For the values given in the question 

€ 

Cuoc
xuCswu

=
40

0.95× 50
= 0.8421 

 We therefore need to solve 

€ 

z =1.8421+ ln(z) where 

€ 

z =
xf
xw

. 

 This transcendental equation can be solved by an iterative scheme 
  

€ 

zn+1 =1.8421+ ln(zn)  

 Using a first guess of 

€ 

z0 = 3, this converges to 

  

€ 

z = 2.9104  

  

€ 

∴ xw =
xf
z

=
0.007
2.9104

= 0.002405  

 For this value of 

€ 

xw  

  

€ 

W = P
( xp − xf )
( xf − xw)

= 32.85 0.04 − 0.007
0.007 − 0.002405

= 235.92 te  

  

€ 

∴ F = P+W = 32.85+ 235.92 = 268.77 te  

  

€ 

∴ Muoc =
F
0.95

=
268.77
0.95

= 282.92 te 

  

€ 

S =W − ln(xw)[ ] +P − ln( xp)[ ] −F − ln( xf )[ ]  

  

€ 

∴ S = 235.92 − ln(0.002405)[ ] +32.85 − ln(0.04)[ ] −268.77 − ln(0.007)[ ] 

  

€ 

∴ S =194.79 teSWU  

  

€ 

Cost =CuocMuoc +CswuS  

  

€ 

∴ Cost = 40× 282.92×103 + 50×194.79×103 = $21.056×106 

 This is indeed less than the cost when 

€ 

xw = 0.003, although only ~2% less. [35%] 

 

Assessor’s Comments: 
All candidates: 31 attempts, Average raw mark 12.9/20, Maximum 19, Minimum 2. 



4M16 2021  Final crib (gtp10) 

9 

Comfortably the least popular question, attempted by only 34% of candidates, but done very well 
by some. 
Answers to part (a) were often lacking in detail (given the amount of credit available). Several 
answers incorrectly thought separative work was important principally in determining whether to 
reprocess or not, while failing to note that the relative cost of separative work compared to uranium 
feed is important in configuring any enrichment plant. 
The calculations in parts (b)(i) to (iii) were generally done well with confusion over units being the 
main source of error. 
The transcendental equation in part (b)(iv) confounded many. Those who recognized that an 
iterative solution was possible usually found the correct result, but did not always follow through in 
calculating the new feed and tails mass flows. 
 


