
 1

4M21 Software Engineering and Design Solutions: 2021/2022 Solutions

Elena Punskaya May 2022

Q1. (a) A class represents a key concept within the system. It encapsulates data and behaviour. Classes provide
abstraction. A class can be used to create multiple instances, i.e. objects that can contain data and behave
according to class definition. Given the same data (state) two independent instances of the same class will
behave exactly the same. In production, a large number of objects are created, interact with each other, or are
destroyed if no longer needed. [5%]
 (b) One of possible solutions is presented below.

 (i) Class diagram

 [35%]

(ii) Sequence diagram

 [30%]

Test Service Patient

1..*
uses

TestCentre

nextAvailableSlot()
book(dateTime, Patient)

book(name, DoB)

Name
DoB
Email
Address

Appointment

DateTime

1..*
provides
care for

Name
Location

create(dateTime, Patient)

1..*
has

1
for

/aPatient:
Patient

/aTestCentre:
TestCentre

/anAppointment:
Appointment

/aTestService:
TestService

book(name, DoB) lookUp(name, DoB)

aPatient

findNearestCentre(address)

aTestCentre

getAddress()

nextAvailableSlot()

address

dateTime

book(dateTime, aPatient) create(dateTime,
aPatient)

anAppointment

 2

 (iii) Class diagram

Sequence diagram

[30%]

Assessor’s comments: The question was designed to test the ability to interpret the requirements independently, apply the main
object-oriented design concepts in practice (in particular, principles of decoupling and abstraction) and the ability to communicate the
design through class and sequence diagrams. It was the most popular question, and most students were able to go through an
independent design process successfully, identifying the key concepts and communicating the outcome clearly using the standard
notation. Not everyone was careful when working with both class and sequence diagrams as often sequence diagram did not
correspond to the class diagram. Not everyone read the question carefully, and, as a result, some functionality was omitted / alternative
functionality was provided.

Test Service Patient

1..*
uses

TestCentre

nextAvailableSlot()
book(dateTime, Patient)

GPSurgery
Name
Email

book(name, DoB)

Name
DoB
Email
Address

Appointment

DateTime

1..*
provides
care for

getGPSurgery()

Name
Location

create(dateTime, Patient)

1..*
has

1
registered with

1
for

Notifiable

notifyAbout
(Appointment)

/aPatient:
Patient

/aTestCentre:
TestCentre

/anAppointment:
Appointment

/aTestService:
TestService

book(name, DoB) lookUp(name, DoB)

aPatient

findNearestCentre(address)

aTestCentre

getAddress()

nextAvailableSlot()

address

dateTime

book(dateTime, aPatient) create(dateTime,
aPatient)

anAppointment

/aGPSurgery:
Appointment

notifyAbout(anAppointment)

getGPSurgery()

notifyAbout(anAppointment)

 3

Q2. (a) Although structurally somewhat similar, the intent is different. Composite allows to treat a composite
(group of) leaves in the same way as a leaf. Decorator gives additional feature to a leaf and allows to treat
“decorated” leaf in the same way as any other leaf. [10%]

(b) One of possible solutions is presented below.

 (i) Class Diagram

 [20%]

 (ii) Sequence Diagram

 [20%]

 (iii) Class Diagram

ShopSystem Customer

1..*
sells

BouquetItem

Order

add(BouquetItem)
remove(BouquetItem)
checkOut()

order(Bouquet, Customer)

Name
Email
Address
Phone
CreditCard

1..*
registered

Name
Price
Description

1
by

create(Customer)

1..*
contains

/anOrder:
Order

/aBouquetItem:
BouquetItem

/aCustomert:
Customer

/aShopSystem:
ShopSystem

order(aBouquetItem, aCustomer)

chargeCreditCard(creditCard,
price)

getPrice()

getCreditCard()

price

creditCard

create(aCustomer)

add(aBouquet)

checkOut()

 4

 [20%]

(iv) Class Diagram. Traditional implementation of Decorator would leave to “box in box in a box” game so is not
applicable. At the very least it would have to be modified as follows.

 [30%]

Assessor’s comments: The question was on understanding of the key concepts of the object-oriented design such as polymorphism
and inheritance and extending the design by identifying a common design problem and figuring out a reliable solution to it in a form of
an appropriate design pattern as well as a correct way to apply it. Although less popular, the question was completed reasonably well,
and the vast majority of students demonstrated their understanding of inheritance and were successful in identifying decorator pattern
as the most appropriate one. However, not everyone was able to apply the decorator correctly in these specific circumstances, there
were some inconsistencies between class and sequence diagrams, inaccuracies in UML notation and some candidates struggled with
the concept of polymorphism.

ShopSystem <Customer>

1..*
sells

Bouquet

Order

add(Bouquet)
remove(Boquet)
checkOut()

order(Bouquet, Customer)

Name
Email
Address
Phone

1..*
registered

Name
Price
Description

1
by

create(Customer)

<charge(Amount)>

Company

-accountNumber

Person

-creditCard

charge(Amount) charge(Amount)

1..*
contains

/anOrder:
Order

/aBouquetItem:
BouquetItem

/aCustomert:
Customer

/aShopSystem:
ShopSystem

order(aBouquetItem, aCustomer)

getPrice()

charge(amount)

price

create(aCustomer)

add(aBouquet)

checkOut()

<BouquetItem> Order

add(Bouquet)
remove(Boquet)
checkOut()

Name
<Price>
<Description>

create(Customer)

GiftBoxBouqetItem

Price
Description

PlainBouqetItem1
contains

Price
Description

1..*
contains

 5

Q3 (a) One of the possible answers presented below:

User-centred design including providing a good conceptual model, simplicity and predictability, designing for error
and being understandable.

Activity-Centred Design, careful consideration of use cases.

Taking into account emotions and designing experiences.

 [10%]

(b) One of possible solutions is presented below

 (i)

 [20%]

Constraints : small screen
.

Clean Schedule Done

Vaeeeeem
* +

. . .
Q

Start 10 : 05 Background
Mop]
-Other

Back
Notification

Buttons Current time when done
,

to choose pre-set to
options start now Button ✓

Vacuum / Time can
to dismiss

Mop be adjusted
leading to as on home

scheduling appliances
screen with + & -

Buttons OK → background until

notification of success

✗ or swipe gesture - back to

selection

Other bowls to the screen
with

more options such as more

complex scheduling , deep clean ,
etc

.

 6

(ii)

 [20%]

Apologies Apologies

> Please empty - Please fill in
the 6in water tank

iiit a

Button to dismiss Button to dismiss's

notification notification

Clean Schedule Done

* + Q
Vaeeeeem . . .

Start 10 : 05 Background
Mop

-Other

Back

Apologies

Cannot connect
other errors

should cover
and

>
to the robot.

be included in UI flow accordingly
Please check and

try again .

n

- low battery
please wait for the robot

Button to dismiss

notification to charge

- cannot reach charging
Staton (streak / cannot move)

please find the robot first

 7

(iii)

 [30%]

(iv)

Intentions : -

-
check that all is well

and the job is progressing as

planned → confirmation screen

- stop cleaning
- find the robot

clean

- ¥ :*
TO

In progoneesp

✗ it ← Play sound to find
2060-1

T

stop cleaning

Also handle anything that can

go wrong
such as

- full bin (if vacuuming)

- empty water tank Cif mopping)

-
stuck and cannot

only

continue

- delayed as extra

recharge needed

 8

 [20%]
Assessor’s comments: This was a user interface design question that was answered well by most candidates. A popular question that
candidates were able to complete without any major challenges, successfully optimising their design for a small smartwatch screen,
although not everyone paid attention to the UI flow. Some candidates struggled with the concept of use cases and activity-based
planning in part (b.iii) or ignored the pre-condition “after … [the users] instructed the robot to start the clean”. Some candidates did not
read the last part of the question carefully and suggested slight variations on the “successfully completed job” notifications even though
the question stated that the user “found the notifications of successfully completed jobs unhelpful”.

3. C) Notifications

- full bin , please empty = can't

proceed (additionally and optionally

notify after the job is

completed so that ready
for the next one that

can be scheduled from

anywhere ;
optional , when the user is

on the same wifi
,
i. e. at

home if possible
and not at night lime)

- robot is stuck

notify asap
as
can't proceed

- repeat when the

user is at
home

- empty water tank

- delay due to extra charge

 9

Q4. (a) Agile methodologies that could be given as an example: Extreme Programming, Test Driven
Development, Feature Driven Development, Agile Modelling, Agile Unified Process, Dynamic System
Development, Scrum among others.

The following could be noted… Agile techniques allow to incorporate a more iterative process to software
development and therefore allow to adapt and grow software and incorporate changes. They do not necessarily
allow to clarify system goals early in the process, and it might be difficult to charge customers for changes. If all
requirements are not defined well in advance testing and delivery according to specification might be not suitable
for critical products. Some of the more traditional project management tools might not work well with it although
agile management tools are available. [15%]

 (b) (i) Due to the nature of the application the core functions of the system are critical and have to work
reliably from the first moment it goes live, the following considerations are important among others

- safety of people is involved, risk of multiple deaths, full risks analysis necessary

- expensive product, extremely high costs of potential recall

- regulatory requirements, testing to meet standards, requiring formal documentation

A formal waterfall model is recommended to develop the core functionality of the system. [20%]

(ii) Waterfall model follow a sequential process flowing steadily down the phases:

Requirements and Analyses: the environment and processes in which software will be used need to be analysed
to establish operational parameters and required interfaces. Product requirements documentation is produced in
compliance with relevant regulations.

Design: software architecture is defined to meet functional specifications. The design is documented in relation to
requirements being addressed.

Implementation: code is produced and tested to perform functions according to specifications.

Testing: the test specification is developed and the product is tested Test results are captured.

Operations: requirements and guidelines are established for installation, updates and maintenance of the product

This project will typically require a Quality Management System in place and will be utilising Gantt chart for
project management and Source Code Repository for code development. Other tools can be mentioned. [20%]

(iii)

Method: First, user interactions must be defined that are going to be tested. For example, the warning might be
displayed to user when automated braking is activated or the sound might be activated, among other
possibilities. Given the nature of the application a simulator should be used and the user can be explained how to
use the simulator verbally and offered help if required. The users can be observed by the specialists, the session
should be video recorded and feedback can then be captured via qualitative interviews by specialists. The
session time could be around 20 mins.

User group: target user group can then be defined and segmented by age, gender, level of experience (driving),
5 user per group.

Scenarios: the user is asked to “drive” using simulator and “experience” 5 different types of automated braking
system activated using simulator.

 10

Report: includes conclusions and recommendations based on observations by a specialist, qualitative user
feedback and charts/tables with any ranking/scoring users are asked to do. [20%]

(iv) The life cycle of the car is roughly two decades.

Would need to maintain multiple versions of the software going back over the years. This is costly.
Fixes or new functionality on older models might be a challenge. Should try to limit the number of version and
make sure fixes can be back-ported easily.

Security and safety are major concerns. Security and safety updates and patches are critical and will be
a regular occurrence.

Safety standards tend to change. Safety fixes involving new functionality might be a challenge on older
hardware. Might need backup solutions such as manual override.

Costs of maintenance of the software is very significant

[25%]

Assessor’s comments: A reasonably straightforward question on software engineering methodologies and their application. Those
who did attempt the question answered most parts well. Some candidates did not provide direct answers to the questions and instead
made generic statements. Many candidates found part (b.iii) challenging and mixed up the concept of performance testing and usability
studies, although majority of candidates were clearly familiar with the general methodology. Most candidates successfully identified
critical nature of the application and as a result suggested a formal waterfall software development model, yet backtracked in the last
part of the question and concentrated on agile even though the critical aspect of the applications did not change.

