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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2023 09.30 to 11.10

Module 4M24

COMPUTATIONAL STATISTICS AND MACHINE LEARNING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 The expectation of a function with respect to a probability measure takes the integral
form

I = E{ f (X)} =
∫ b

a
f (x)p(x)dx

where X ∈ R is a univariate random variable with probability density p(·), and dx denotes
Lebesguemeasure onR. An estimate Î of the integralI can be obtainedwith a generalised
Monte Carlo scheme such that

Î =

N∑
n=1

wn f (xn)

where x1, · · · , xN are i.i.d from p(·), and wn ∈ R for all n = 1, · · · , N .

(a) We denote the N × 1 vector w = [w1, · · · ,wN ]
T and the N × 1 vector of ones as

1 = [1, · · · , 1]T.

(i) By defining the elements of the N × N dimensional matrix C show that the
expected squared deviation of Î around the true value of I , E{(Î − I)2}, takes the
form I2 [

wTCw − 2wT1 + 1
]
. [30%]

(ii) Derive an expression for the value of w yielding the expected minimum
deviation estimate of I. [10%]

(b) By noting that the matrix C can be written in the form C = εI + 11T where I is the
N × N identity matrix and ε ∈ R is a scalar, use the Sherman-Morrison formula(

A + bcT
)−1
= A−1 −

1(
1 + cTA−1b

) A−1bcTA−1

to show that the minimum deviance estimate ÎMD for I takes the form

ÎMD =
1

ε + N

N∑
n=1

f (xn)

clearly defining the scalar value ε . Assess the general suitability of ÎMD as a practical
estimator that can be implemented. [40%]

(c) (i) Assess whether ÎMD is an unbiased estimator by taking the expectation of
ÎMD. [10%]

(ii) What can be said about the estimator ÎMD as N →∞ ? [10%]
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2 The Metropolis-Hastings algorithm provides a means to draw samples from R with
a probability distribution π∗(dy) having density π(y) with respect to Lebesgue Measure
dy.

(a) For a generic transition kernel of the form P(x, dy) = p(x, y)dy + r(x)δx(dy)

(i) State the conditions on p(x, y) that need to be satisfied for π(·) to be the
invariant density of P(x, ·) and define the form of r(x). [15%]

(ii) Prove that π(·) is the invariant density of P(x, ·) under the conditions satisfied
above. [25%]

(b) (i) For a proposal density q(x, y) derive a form for the acceptance probability
α(x, y) that satisfies the sufficient conditions to yield π(·) as the invariant density of
P(x, ·). [25%]

(ii) Write out the overall form for the Metropolis-Hastings transition kernel that
targets a density π(·) with proposal q(x, y) and acceptance probability α(x, y). [15%]

(c) Write out pseudo-code for the Metropolis-Hastings algorithm that uses a symmetric
proposal density and targets the density

π(x) =
1
Z
φ(x) where Z =

∫
R
φ(x)dx

[20%]
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3 (a) Describe the characteristic of point wise function evaluation in a Reproducing
Kernel Hilbert Space (RKHS) and how this differs from the L2 norm in a Hilbert space of
functions. [15%]

(b) Explain how the Moore-Aronszajn theorem relates a reproducing kernel function to
an RKHS. Give two defining properties of a reproducing kernel function, and write down
the reproducing property of such a function. [20%]

(c) Consider discrete counts, yn with n = 1, · · · , N , of an i.i.d process that follow
a conditional Poisson probability function p(y |x) = exp(−µ(x)) × µ(x)y/y! where
the function value µ(·) is modelled in a Reproducing Kernel Hilbert Space with an
approximating functional form log(µ̂(·)) =

∑N
n=1 αnk(·, xn). Each xn is a vector of

features corresponding to each count yn, and k(·, ·) is a reproducing kernel function.
The regularised log-likelihood function is given as,

L(α) =
N∑

i=1
log(p(yi |xi)) −

λ

2
‖ log(µ̂)‖2

where the N × 1 vector α = [α1, · · · , αN ]
T.

(i) Let the N × 1 vector y = [y1, · · · , yN ]
T and by defining the N × N matrix K

and the N × 1 vector µ̂ show that the gradient of the regularised log-likelihood with
respect to the weights α takes the vector form of K (y − µ̂ − λα). [30%]

(ii) Show that the expression for thematrix of second derivatives of the regularised
log-likelihood with respect to the weights α takes the form−KVKT−λK by defining
the diagonal matrix V. [20%]

(iii) Using the results from (i) and (ii) above write down a Newton iteration scheme
to find the maximum regularised likelihood solution for the kernel weights α. [15%]
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4 The Student t-distribution defined on R has a probability density function with
respect to Lebesgue Measure which is given as

p(x) =
Γ

(
ν+1
2

)
√
νπΓ

(
ν
2

) (
1 +

x2

ν

)− ν+1
2

where x ∈ R, ν is a parameter known as the degrees of freedom, and Γ is the gamma
function.

(a) Derive the equation describing a Langevin Diffusion defined on R whose invariant
density is that of the Student t-distribution. [40%]

(b) Write out an Unadjusted Langevin Algorithm (ULA) which will converge to a biased
version of the Student t-distribution. [20%]

(c) The Metropolis Adjusted Langevin Algorithm (MALA) takes ULA as a proposal
mechanism and removes the bias by applying an Accept-Reject step. Define the
corresponding MALA acceptance probability for the Student t-distribution target. [40%]

END OF PAPER
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