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1. Control Variates

(a)

Var (µ̂) = Var

(
1

N

N∑
n=1

Xn

)

=
1

N2

N∑
n=1

Var (Xn) =
1

N2

N∑
n=1

σ2

=
σ2

N

20 marks available

(b) (i)

µ̂CV = µ̂+ c [m− m̂]

Unbiased because E [µ̂] = µ, and E [m̂] = m (= E [g(x)]).
10 marks available

(ii)

Var (µ̂CV ) = Var (µ̂+ c [m− m̂])

Using Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y ) we have the following:

Var (µ̂CV ) = Var (µ̂) + c2Var (m− m̂) + 2cCov (µ̂,m− m̂)

= Var (µ̂) + c2Var (m̂) + 2cCov (µ̂, m̂)

Now we can find the optimal variance by finding the stationary point of the variance wrt the coefficient c.

∂

∂c
Var (µ̂CV ) = 2cVar (m̂) + 2Cov (µ̂, m̂) = 0

Solving for c:

c = −Cov (µ̂, m̂)

Var (m̂)

Substituting back into the expression for the control variate estimator variance Var (µ̂) + c2Var (m̂) +
2cCov (µ̂, m̂) gives the answer:

Var (µ̂CV ) = Var (µ̂)− Cov (µ̂, m̂)
2

Var (m̂)

30 marks available

(c) X ∼ U [0, 1] ∈ R. First we can find the mean µ = E [f(x)].

µ = E
[

1

1 + x

]
=

∫ 1

0

1

1 + x
dx = [log(1 + x)]

1
0 = log 2

1



Now to find the variance σ2 = E
[

1
(1+x)2

]
− µ2.

σ2 = E
[

1

(1 + x)2

]
− (log 2)2

=

∫ 1

0

1

(1 + x)2
dx− (log 2)2

=

[
− 1

1 + x

]1
0

− (log 2)2

=
1

2
− (log 2)2 ≈ 0.0195

which gives

Var(µ̂) =
σ2

N
≈ 0.0195

N

Defining Var(m̂) =
σ2
g

N . We find the mean and variance of g(x):

m = E [1 + x] =

∫ 1

0

(1 + x)dx =

[
x+

x2

2

]1
0

=
3

2

σ2
g = E

[
(1 + x)2

]
− 3

2
=

∫ 1

0

(1 + x)2dx− 9

4
=

∫ 1

0

(1 + 2x+ x2)dx− 9

4

=

[
x+ x2 +

x3

3

]1
0

− 9

4
=

1

12

which gives

Var(m̂) =
1

12N

Finally we must find the covariance Cov(µ̂, m̂):

Cov(µ̂, m̂) =
1

N
Cov(f(x), g(x))

=
1

N
E [f(x)g(x)]− 3

2N
log 2

=
1

N

∫ 1

0

1 + x

1 + x
dx− 3

2N
log 2

=
1

N

∫ 1

0

dx− 3

2N
log 2

=
1

N
− 3

2N
log 2

Substituting this into the optimal variance expression gives the required result.

Var (µ̂CV ) =
0.0195

N
− 12N

(
1

N
− 3

2N
log 2

)2

40 marks available
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2. Function Approximation

(a) The set C[−π, π] is the continuous functions of [−π, π] and L2[−π, π] is the set of square integrable functions
which will include discontinuous functions such as the step function, which would not be in C[−π, π]. Therefore,
C2[−π, π] would be the set of L2 integrable functions which are also continuous. 10 marks available

(b)

f(x) =

∞∑
k=1

ckφk(x)

‖f(x)‖2L2 =

∫ π

−π

(∑
i

ciφi(x)

)∑
j

c∗jφ
∗
j (x)

 dx

=
∑
i

∑
j

cic
∗
j

∫ π

−π
φi(x)φ∗j (x)dx

=
∑
i

∑
j

cic
∗
jδi,j =

∞∑
i=1

c2i

where the last line comes from the orthonormality of the functions {φk}, i.e.∫ π

−π
φi(x)φ∗j (x)dx =

{
1 i = j

0 i 6= j
= δi,j

giving

‖f(x)‖L2 =

√√√√ ∞∑
i=1

c2i

20 marks available

(c)

‖f‖2W s
2

= ‖Dsf‖2L2

f(x) =
∞∑
k=1

ck exp(ikx)

Df(x) =

∞∑
k=1

(ik)ck exp(ikx)

Dsf(x) =

∞∑
k=1

(ik)sck exp(ikx)

‖Dsf‖2L2 =
∑
k

∣∣(ik)2s
∣∣ c2k =

∑
k

k2sc2k

30 marks available
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(d)

εN (f) = ‖f − fN‖2L2 = ‖
∞∑

k=N+1

ckφk(x)‖2L2

=

∞∑
k=N+1

c2k =

∞∑
k=N+1

c2kk
2s 1

k2s

<
1

N2s

∞∑
k=N+1

c2kk
2s

<
1

N2s

∞∑
k=1

c2kk
2s =

1

N2s
‖f‖2W s

2

The smoother the function, the value of s will increase, and as s increases, the impact of increasing N is greater.
Rate of convergence increases as the smoothness of the function increases. 40 marks available

3. Gaussian Measure

(a) (i) Since the probabilities are defined wrt the Lebesgue measure, then the definition of Bayes rule will not be
valid because the Lesbesgue measure in H is not well defined.

10 marks available

(ii) If the reference measure µ0 is a probability measure defined in H, then the Radon-Nikodym derivative

dµy

dµ0
(x) ∝ P (y|x)

where µy is the posterior measure, and P (y|x) the likelihood of data y ∈ RD given x ∈ H.
10 marks available

(b) (i) This requires that

µ0 =

∞∏
k=1

g ∝ exp

(
−1

2

∞∑
k=1

x2k

)

be finite, and so

∞∑
k=1

x2k <∞

which indicates

xk=1,...,∞ ∈ l2 ⊂ R∞

30 marks available

(ii)

µy(x) ∝ P (y|x)µ0(x) = P (y|x)N (x; 0, C)

For a proposal v = u+ βζ, with ζ ∼ N (0, C), i.e. v ∼ N (u, β2C), the acceptance probability is given by

α(v, u) = min {J(v)− J(u), 1}

where J(v) = logP (y|v)− 1
2 |C
− 1

2 v|2.

The problem here is that |C− 1
2 v|2 is unbounded and so the acceptance ratio is not well defined. 30 marks

available
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(iii) Alternative proposal is v =
√

1− β2u + βζ, with ζ ∼ N (0, C) - the pCN proposal. The acceptance ratio
becomes

α(v, u) = min

{
P (y|v)

P (y|u)
, 1

}
since P (y, ·) is defined on RD, the acceptance ratio is well defined for u, v ∈ H.
20 marks available

4. Langevin Diffusion

(a) Starting with the Langevin SDE:

dXt = −∇U(Xt)dt+
√

2dBt

which has invariant density p(x) ∝ exp(−U(Xt)).

From the given SDE:

∇U(Xt) = Xt − tanh(Xt)

Now integrate to find U(Xt):

U(x) =

∫
(x− tanh(x)) dx

=
x2

2
− ln(cosh(x)) + C

Which gives

p(x) ∝ exp(−U(x))

= exp

(
−x

2

2
+ ln(cosh(x))− C

)
∝ cosh(x) exp

(
−x

2

2

)
=
ex + e−x

2
exp

(
−x

2

2

)
∝ exp

(
−x

2

2
+ x

)
+ exp

(
−x

2

2
− x
)

∝ exp

(
−1

2
(x− 1)2

)
+ exp

(
−1

2
(x+ 1)2

)

and so the normalised density p(x) is given by

p(x) =
1

2
N (1, 1) +

1

2
N (−1, 1)

60 marks available

(b)

q(x) = exp (−x− exp(−x))

Need to determine −∇U(x) = ∇ ln q(x)

ln q(x) = −x− e−x
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∇ ln q(x) = −1 + e−x

Hence

−∇U(x) = −1 + e−x

and the corresponding SDE is given by

dXt =
(
e−Xt − 1

)
dt+

√
2dBt

40 marks available
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