Engineering Tripos Part IIB

Module 4M24: Computational Statistics and Machine Learning

4M24 Tripos 2021/22 - Cribs

1. Control Variates

(a)

$$\operatorname{Var}(\hat{\mu}) = \operatorname{Var}\left(\frac{1}{N}\sum_{n=1}^{N}X_{n}\right)$$
$$= \frac{1}{N^{2}}\sum_{n=1}^{N}\operatorname{Var}(X_{n}) = \frac{1}{N^{2}}\sum_{n=1}^{N}\sigma^{2}$$
$$= \frac{\sigma^{2}}{N}$$

 $20~{\rm marks}$ available

(b) (i)

$$\hat{\mu}_{CV} = \hat{\mu} + c \left[m - \hat{m} \right]$$

Unbiased because $\mathbb{E} [\hat{\mu}] = \mu$, and $\mathbb{E} [\hat{m}] = m (= \mathbb{E} [g(x)])$. 10 marks available

(ii)

$$\operatorname{Var}\left(\hat{\mu}_{CV}\right) = \operatorname{Var}\left(\hat{\mu} + c\left[m - \hat{m}\right]\right)$$

Using $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$ we have the following:

$$\operatorname{Var}(\hat{\mu}_{CV}) = \operatorname{Var}(\hat{\mu}) + c^{2}\operatorname{Var}(m - \hat{m}) + 2c\operatorname{Cov}(\hat{\mu}, m - \hat{m})$$
$$= \operatorname{Var}(\hat{\mu}) + c^{2}\operatorname{Var}(\hat{m}) + 2c\operatorname{Cov}(\hat{\mu}, \hat{m})$$

Now we can find the optimal variance by finding the stationary point of the variance wrt the coefficient c.

$$\frac{\partial}{\partial c} \operatorname{Var}\left(\hat{\mu}_{CV}\right) = 2c \operatorname{Var}\left(\hat{m}\right) + 2 \operatorname{Cov}\left(\hat{\mu}, \hat{m}\right) = 0$$

Solving for c:

$$c = -\frac{\operatorname{Cov}\left(\hat{\mu}, \hat{m}\right)}{\operatorname{Var}\left(\hat{m}\right)}$$

Substituting back into the expression for the control variate estimator variance $\operatorname{Var}(\hat{\mu}) + c^2 \operatorname{Var}(\hat{m}) + 2c \operatorname{Cov}(\hat{\mu}, \hat{m})$ gives the answer:

$$\operatorname{Var}\left(\hat{\mu}_{CV}\right) = \operatorname{Var}\left(\hat{\mu}\right) - \frac{\operatorname{Cov}\left(\hat{\mu}, \hat{m}\right)^{2}}{\operatorname{Var}\left(\hat{m}\right)}$$

30 marks available

(c) $X \sim \mathcal{U}[0,1] \in \mathbb{R}$. First we can find the mean $\mu = \mathbb{E}[f(x)]$.

$$\mu = \mathbb{E}\left[\frac{1}{1+x}\right] = \int_0^1 \frac{1}{1+x} dx = [\log(1+x)]_0^1 = \log 2$$

Now to find the variance $\sigma^2 = \mathbb{E}\left[\frac{1}{(1+x)^2}\right] - \mu^2$.

$$\sigma^{2} = \mathbb{E}\left[\frac{1}{(1+x)^{2}}\right] - (\log 2)^{2}$$
$$= \int_{0}^{1} \frac{1}{(1+x)^{2}} dx - (\log 2)^{2}$$
$$= \left[-\frac{1}{1+x}\right]_{0}^{1} - (\log 2)^{2}$$
$$= \frac{1}{2} - (\log 2)^{2} \approx 0.0195$$

which gives

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma^2}{N} \approx \frac{0.0195}{N}$$

Defining $\operatorname{Var}(\hat{m}) = \frac{\sigma_g^2}{N}$. We find the mean and variance of g(x):

$$m = \mathbb{E}\left[1+x\right] = \int_0^1 (1+x)dx = \left[x + \frac{x^2}{2}\right]_0^1 = \frac{3}{2}$$
$$\sigma_g^2 = \mathbb{E}\left[(1+x)^2\right] - \frac{3}{2} = \int_0^1 (1+x)^2 dx - \frac{9}{4} = \int_0^1 (1+2x+x^2)dx - \frac{9}{4}$$
$$= \left[x + x^2 + \frac{x^3}{3}\right]_0^1 - \frac{9}{4} = \frac{1}{12}$$

which gives

$$\operatorname{Var}(\hat{m}) = \frac{1}{12N}$$

Finally we must find the covariance $\operatorname{Cov}(\hat{\mu}, \hat{m})$:

$$Cov(\hat{\mu}, \hat{m}) = \frac{1}{N} Cov(f(x), g(x))$$

= $\frac{1}{N} \mathbb{E} [f(x)g(x)] - \frac{3}{2N} \log 2$
= $\frac{1}{N} \int_0^1 \frac{1+x}{1+x} dx - \frac{3}{2N} \log 2$
= $\frac{1}{N} \int_0^1 dx - \frac{3}{2N} \log 2$
= $\frac{1}{N} - \frac{3}{2N} \log 2$

Substituting this into the optimal variance expression gives the required result.

$$\operatorname{Var}\left(\hat{\mu}_{CV}\right) = \frac{0.0195}{N} - 12N\left(\frac{1}{N} - \frac{3}{2N}\log 2\right)^2$$

40 marks available

2. Function Approximation

- (a) The set $C[-\pi,\pi]$ is the continuous functions of $[-\pi,\pi]$ and $L^2[-\pi,\pi]$ is the set of square integrable functions which will include discontinuous functions such as the step function, which would not be in $C[-\pi,\pi]$. Therefore, $C_2[-\pi,\pi]$ would be the set of L^2 integrable functions which are also continuous. 10 marks available
- (b)

$$f(x) = \sum_{k=1}^{\infty} c_k \phi_k(x)$$

$$\begin{split} \|f(x)\|_{L^{2}}^{2} &= \int_{-\pi}^{\pi} \left(\sum_{i} c_{i} \phi_{i}(x)\right) \left(\sum_{j} c_{j}^{*} \phi_{j}^{*}(x)\right) dx \\ &= \sum_{i} \sum_{j} c_{i} c_{j}^{*} \int_{-\pi}^{\pi} \phi_{i}(x) \phi_{j}^{*}(x) dx \\ &= \sum_{i} \sum_{j} c_{i} c_{j}^{*} \delta_{i,j} = \sum_{i=1}^{\infty} c_{i}^{2} \end{split}$$

where the last line comes from the orthonormality of the functions $\{\phi_k\}$, i.e.

$$\int_{-\pi}^{\pi} \phi_i(x)\phi_j^*(x)dx = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases} = \delta_{i,j}$$

giving

$$||f(x)||_{L^2} = \sqrt{\sum_{i=1}^{\infty} c_i^2}$$

20 marks available

(c)

$$\|f\|_{W_2^s}^2 = \|D^s f\|_{L^2}^2$$

$$f(x) = \sum_{k=1}^{\infty} c_k \exp(ikx)$$
$$Df(x) = \sum_{k=1}^{\infty} (ik)c_k \exp(ikx)$$
$$D^s f(x) = \sum_{k=1}^{\infty} (ik)^s c_k \exp(ikx)$$

$$\|D^s f\|_{L^2}^2 = \sum_k \left| (ik)^{2s} \right| c_k^2 = \sum_k k^{2s} c_k^2$$

30 marks available

$$\begin{aligned} \epsilon_N(f) &= \|f - f_N\|_{L^2}^2 = \|\sum_{k=N+1}^{\infty} c_k \phi_k(x)\|_{L^2}^2 \\ &= \sum_{k=N+1}^{\infty} c_k^2 = \sum_{k=N+1}^{\infty} c_k^2 k^{2s} \frac{1}{k^{2s}} \\ &< \frac{1}{N^{2s}} \sum_{k=N+1}^{\infty} c_k^2 k^{2s} \\ &< \frac{1}{N^{2s}} \sum_{k=1}^{\infty} c_k^2 k^{2s} = \frac{1}{N^{2s}} \|f\|_{W_2^s}^2 \end{aligned}$$

The smoother the function, the value of s will increase, and as s increases, the impact of increasing N is greater. Rate of convergence increases as the smoothness of the function increases. 40 marks available

3. Gaussian Measure

(a) (i) Since the probabilities are defined wrt the Lebesgue measure, then the definition of Bayes rule will not be valid because the Lesbesgue measure in \mathcal{H} is not well defined.

10 marks available

(ii) If the reference measure μ^0 is a probability measure defined in \mathcal{H} , then the Radon-Nikodym derivative

$$\frac{d\mu^y}{d\mu^0}(x) \propto P(y|x)$$

where μ^y is the posterior measure, and P(y|x) the likelihood of data $y \in \mathbb{R}^D$ given $x \in \mathcal{H}$. 10 marks available

(b) (i) This requires that

$$\mu^{0} = \prod_{k=1}^{\infty} g \propto \exp\left(-\frac{1}{2}\sum_{k=1}^{\infty} x_{k}^{2}\right)$$

be finite, and so

$$\sum_{k=1}^{\infty} x_k^2 < \infty$$

which indicates

$$x_{k=1,\ldots,\infty} \in l_2 \subset \mathbb{R}^{\infty}$$

30 marks available

(ii)

$$\mu^{y}(x) \propto P(y|x)\mu^{0}(x) = P(y|x)\mathcal{N}(x;0,C)$$

For a proposal $v = u + \beta \zeta$, with $\zeta \sim \mathcal{N}(0, C)$, i.e. $v \sim \mathcal{N}(u, \beta^2 C)$, the acceptance probability is given by

$$\alpha(v, u) = \min \left\{ J(v) - J(u), 1 \right\}$$

where $J(v) = \log P(y|v) - \frac{1}{2}|C^{-\frac{1}{2}}v|^2$.

The problem here is that $|C^{-\frac{1}{2}}v|^2$ is unbounded and so the acceptance ratio is not well defined. 30 marks available

(iii) Alternative proposal is $v = \sqrt{1 - \beta^2}u + \beta\zeta$, with $\zeta \sim \mathcal{N}(0, C)$ - the pCN proposal. The acceptance ratio becomes

$$\alpha(v, u) = \min\left\{\frac{P(y|v)}{P(y|u)}, 1\right\}$$

since $P(y, \cdot)$ is defined on \mathbb{R}^D , the acceptance ratio is well defined for $u, v \in \mathcal{H}$. 20 marks available

4. Langevin Diffusion

(a) Starting with the Langevin SDE:

$$dX_t = -\nabla U(X_t)dt + \sqrt{2}dB_t$$

which has invariant density $p(x) \propto \exp(-U(X_t))$.

From the given SDE:

$$\nabla U(X_t) = X_t - \tanh(X_t)$$

Now integrate to find $U(X_t)$:

$$U(x) = \int (x - \tanh(x)) dx$$
$$= \frac{x^2}{2} - \ln(\cosh(x)) + C$$

Which gives

$$p(x) \propto \exp(-U(x))$$

$$= \exp\left(-\frac{x^2}{2} + \ln(\cosh(x)) - C\right)$$

$$\propto \cosh(x) \exp\left(-\frac{x^2}{2}\right)$$

$$= \frac{e^x + e^{-x}}{2} \exp\left(-\frac{x^2}{2}\right)$$

$$\propto \exp\left(-\frac{x^2}{2} + x\right) + \exp\left(-\frac{x^2}{2} - x\right)$$

$$\propto \exp\left(-\frac{1}{2}(x-1)^2\right) + \exp\left(-\frac{1}{2}(x+1)^2\right)$$

and so the normalised density p(x) is given by

$$p(x) = \frac{1}{2}\mathcal{N}(1,1) + \frac{1}{2}\mathcal{N}(-1,1)$$

60 marks available

(b)

$$q(x) = \exp\left(-x - \exp(-x)\right)$$

Need to determine $-\nabla U(x) = \nabla \ln q(x)$

$$\ln q(x) = -x - e^{-x}$$

$$\nabla \ln q(x) = -1 + e^{-x}$$

Hence

$$-\nabla U(x) = -1 + e^{-x}$$

and the corresponding SDE is given by

$$dX_t = \left(e^{-X_t} - 1\right)dt + \sqrt{2}dB_t$$

 $40~{\rm marks}$ available