
CANDIDATE NUMBER:

[TO FILL]

Version: IB/2

EGT3

ENGINEERING TRIPOS PART IIB

Thursday 27 April 2023   2 to 4.30

Module 4M26

ALGORITHMS AND DATA STRUCTURES

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right

margin.

Write your candidate number not your name on the cover sheet.

The runtime of a successful test case should be no longer than 10 seconds when run on a standard

DPO machine.

No access to internet or other resources is permitted.

Solutions should not use and import any python libraries. Only default Python data structures are to

be used.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

Engineering Data Book

DPO computer

10 minutes reading time is allowed for this paper at the start of the test.

You may not start to read the questions printed on the subsequent pages of this question paper

until instructed to do so.

You may not remove any stationery from the Examination Room.

1.
(a) Let be a list of 1D point coordinates on a line. Write the function, pair ,

which:

  (i) finds the pair of distinct points, and , with the smallest distance, ;

  (ii) and outputs the indexes of the points of the pair found. The indexes should be outputed in an

increasing order and separated with a comma (e.g. " 0,3 ").

Your solution should have its run time complexity strictly smaller than .

[30%]

Examples:
Input: [0,1,2,0.1]
Output: 0,3

Input: [0,3,2,1.9,8]
Output: 2,3

Constraints:

.

.

The pair of points with smallest distance is guaranteed to be unique.

Code:

L = [x0,x1, ⋯ ,xn−1] (L)

i j D(i, j) = |xi − xj|

O(n2)

2 ≤ n ≤ 100

xi ∈ R and |xi| ≤ 106

In [1]: def merge(left,right):
 n_l = len(left)
 n_r = len(right)
 n=n_l+n_r
 L_res=[{'val':0,'ind':0} for i in range(n)]
 i=0
 j=0
 for c in range(n):
 if i<n_l and (j>=n_r or left[i]['val']<right[j]['val']):
 L_res[c]=left[i]
 i+=1
 else:
 L_res[c]=right[j]
 j+=1
 return L_res

def merge_sort(A):

 if len(A)==1:
 return A

 left=merge_sort(A[:len(A)//2])
 right=merge_sort(A[len(A)//2:])
 A=merge(left,right)

 return A

def pair(L):

Tests:

Run example test case 1:

0,3

Run example test case 2:

2,3

Automatic Evaluation:
Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 1, part a
Running question 1, part a, test id: 1
Input:
[0, 1, 2, 0.1]
Obtained output:
0,3
<<CORRECT>>
Running question 1, part a, test id: 2
Input:
[0, 3, 2, 1.9, 8]
Obtained output:
2,3
<<CORRECT>>
Running question 1, part a, test id: 3
Input:
[1, 2]
Obtained output:
0,1
<<CORRECT>>
Running question 1, part a, test id: 4
Input:
[100000.01, 2.01, 3.01, 4.01, 5.01, 6.01, 7.01, 8.01, 9.01, 10.01, 11.01, 12.01, 13.0
1, 14.01, 15.01, 16.01, 17.01, 18.01, 19.01, 20.01, 21.01, 22.01, 23.01, 24.01, 25.0
1, 26.01, 27.01, 28.01, 29.01, 30.01, 31.01, 32.01, 33.01, 34.01, 35.01, 19.4]
Obtained output:
18,35

 # Insert code here

 A = [{'val':L[i],'ind':i} for i in range(len(L))]
 A=merge_sort(A)

 min_pair = [0,1]

 for i in range(1,len(L)):
 if abs(A[i]['val']-A[i-1]['val'])<abs(A[min_pair[1]]['val']-A[min_pair[0]]['v
 min_pair=[i-1,i]

 lid = min(A[min_pair[0]]['ind'],A[min_pair[1]]['ind'])
 rid = max(A[min_pair[0]]['ind'],A[min_pair[1]]['ind'])
 return str(lid)+','+str(rid)

In [2]: input_value = [0,1,2,0.1]
print(pair(input_value))

In [3]: input_value = [0,3,2,1.9,8]
print(pair(input_value))

In [4]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=1,question_part_id='a',function=pair,
 test_case_list=[1,2,3,4,5],verbose=True)

<<CORRECT>>
Running question 1, part a, test id: 5
Input:
[-1.1, -3.1, -6.3, -3.005, 9, 12, 14.5, 18.8, 100000]
Obtained output:
1,3
<<CORRECT>>

Total correct outputs:
5 out of 5

(b) Sketch a detailed proof of correctness of your algorithm described in Part (a) and derive its worst-

case time complexity.

[15%]

The algorithm consists of two key steps: (i) sorting of the point coordinates in an increasing order

using MergeSort and (ii) checking all neighbouring pairs of sorted point coordinates for the shortest

distance pair.

Note that the smallest distance pair, , is bound to be one of the neighbouring element pairs in

the sorted list. This can be proven by contradiction - if a pair of closest points was separated by at

least one point, , in the list then then . It takes time to look

through the sorted list of points.

The correctness of MergeSort can be proven by considering mathematical induction on the length of

the array. It is straight forward that MergeSort gives a correct result for as its base case. Lets

assume that it is correct for any array of lenght, . Since then two subsequent recursive

 steps on and will obtain the correctly sorted arrays. Furthermore

 step maintains the loop invariant that after each step of the loop, , is a strictly sorted

array. Hence the whole procedure obtains a strictly sorted array of length .

The computation time of the MergeSort can be described using the following recursive relationship

The substitution method can be used. Lets guess that . In such case

.

Hence

.

Similarly, one can prove that . Hence .

(c) Give brief answers to the following questions.

  (i) Explain what aspects of computing costs are not captured when you specify costs using Big-

notation and why it is still often found useful?

[10%]

Big-O misses out constant factors, it is only an upper bound and there is no guarantee that it is sharp.

It may not apply at all in small cases. The key advantage is that Big-O notation allows to analyse

algorithms independent to technological advances (e.g. increase in processing simple operations)

and simplifies the analysis of algorithms by only looking at the assymptotic behaviour.

  (ii) Explain what is meant by "amortized" cost analysis, giving an example from the realm of data

structures and algorithms where it is helpful.

[10%]

In amortized analysis, the time required to perform a sequence of data-structure operations over all

the operations performed. Amortized analysis guarantees the average performance of each operation

in the worst case. A good example includes operation on a stack. The worst case of

(a, b)

c D(a, b) > min(D(a, c),D(b, c)) Θ(n)

n = 1

k > 1 k > 1

MergeSort L[: k//2] L[k//2 :]

merge L_res

k + 1

T (n) = {
2 ∗ T (⌊n/2⌋) + Θ(n), if n > 1

Θ(1), otherwise

T (n) = O(n log2 n)

T (⌊n/2⌋) ≤ c⌊n/2⌋log2(⌊n/2⌋)

T (n) ≤ 2(c⌊n/2⌋ log2(⌊n/2⌋)) + cn ≤ cn log2(n/2) + cn = cn log2 n − cn + cn = cn log2 n

T (n) = Ω(n log2 n) T (n) = Θ(n log2 n)

O

Multipop

 operation for a stack of elements is , however if we consider a sequence of

operations , and operations, their amortised cost per operation is , with

total amortized cost being .

  (iii) Is it the case that every function of the form is asymptotically bounded by ,

given that and are constants? Justify your answer.

[10%]

For this statement to be true, we need to prove that s.t. for all .

This is equivalent to . Let . We have . For any we can choose

 such that , hence for all . Hence for all

.

(d) You are given an integer list, . Write the function, subsequence(), to find

the length of the longest strictly increasing subsequence of the list, . You can assume that the

elements of the list, , are unique.

Note, a subsequence is a list that can be derived from another list by deleting some or no elements

without changing the order of the remaining elements. Your algorithm should have run time complexity

.

[10%]

Examples:
Input: [5,2,1,1.6,3.5,8,4.5]
Output: 4
Explanation: An example of one of the longest increasing subsequences is [1,1.6,3.5,4.5] .

Input: [-5,1,8.5,3,2,12,7]
Output: 4
Explanation: An example of one of the longest increasing subsequences is [-5,1,3,7] .

Constraints:

.

.

Code:

Tests:

Run example test case 1:

Multipop n O(n) n

Push Pop Multipop O(1)

O(n)

f(n) = Ank O(2n)

A k

∃c,n0 ∈ R
+ Ank ≤ c2n n >= n0

≤ cAnk

2n
g(n) = Ank

2n
=

g(n+1)

g(n)

(1+)k
1
n

2
k

n0 ≤ 1
(1+)k

1
n0

2
g(n + 1) ≤ g(n) n ≥ n0 g(n) ≤ c = g(n0)

n ≥ n0

L = [x0,x1, ⋯ ,xn−1] L

L

L

Θ(n2)

1 ≤ n ≤ 20

xi ∈ R and |xi| ≤ 106

In [5]: def subsequence(L):

 # Insert code here

 S = [0 for i in range(len(L)+1)]

 for i in range(len(L)):
 S[i+1]=1
 for j in range(0,i):
 if L[i]>L[j]:
 S[i+1] = max(S[i+1],S[j+1]+1)
 return S[len(L)]

4

Run example test case 2:

4

Automatic Evaluation:
Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 1, part d
Running question 1, part d, test id: 1
Input:
[5, 2, 1, 1.6, 3.5, 8, 4.5]
Obtained output:
4
<<CORRECT>>
Running question 1, part d, test id: 2
Input:
[-5, 1, 8.5, 3, 2, 12, 7]
Obtained output:
4
<<CORRECT>>
Running question 1, part d, test id: 3
Input:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Obtained output:
15
<<CORRECT>>
Running question 1, part d, test id: 4
Input:
[1]
Obtained output:
1
<<CORRECT>>
Running question 1, part d, test id: 5
Input:
[7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8]
Obtained output:
1
<<CORRECT>>

Total correct outputs:
5 out of 5

(e) Provide key steps of an algorithm which could solve the task described in Part (d) in run time

complexity .

[15%]

When computing the largest increasing subsequence for sequence , the solution

requires to check whether the longest increasing subsequence can be formed with all possible

potential subsequences. However, this full search is not necessary if we use the following procedure:

In [6]: input_value = [5,2,1,1.6,3.5,8,4.5]
print (subsequence(input_value))

In [7]: input_value = [-5,1,8.5,3,2,12,7]
print (subsequence(input_value))

In [8]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=1,question_part_id='d',function=subsequence,
 test_case_list=[1,2,3,4,5],verbose=True)

O(n logn)

L[: i] Θ(n2)

i − 1

(1) Sort the sequence elements in an increasing order using MergeSort. Worst case time complexity

.

(2) Build a perfectly balanced binary search tree of the sorted array. This can be done by utilising

binary search. For each node in this binary tree store the attribute which tells what would be the

longest increasing subsequence formulated by inserting a node equal or larger than .

(3) Initially for all , we have . Then we start computing the longest increasing subsequence

for the first item , second item (ie.) and so on. We use function max_value to

obtain the lenght, , of the longest possible increasing sequence in the list so far(ie. when

item is considered). Once it is obtained, we find the node with value in the tree, and update its

 attribute. We then propagate this value up the tree. Note that this value should be propagated

only to the parents of the left child (i.e.) in the path towards the root.

2.
A B-tree of minimum degree is a data structure with the property that every node may contain at

most keys. For this question, we will assume that all keys are distinct, that all nodes contain

keys but not values, and that all nodes of the B-tree fit into memory (no disk read/writes are required).

(a) Implement a function to search for a given query key, , starting from a given node, , in a B-

tree by completing the search() function below. If the query key exists in the B-tree, your

function should return the node that contains the query key together with the index of the query key

among its keys. Otherwise, your function should return None . For a B-tree of keys, your solution

should run in time.

[35%]

Examples:
Your searches will be executed on a B-tree of minimum degree into which the following

sequence of keys has been inserted prior to your search: [3, 5, 6, 2, 4, 1, 8]. The resulting B-tree is

visualised below.

Θ(n log2 n)

v. lis

v. key

v v. lis = 0

L[0] L[: 1] (root,L[i])

lis L[: i]

i L[i]

lis

v. parent. key > v. key

In [9]: def max_value(v,key):
 if v is None:
 return 0
 if key >v.key:
 return max(v.lis,max_value(v.right_child,key))
 elif key == v.key:
 return v.lis
 return max_value(v.left_child,key)
def propagate(v,lis):
 if v.parent is None:
 return
 if v.parent.left_child == v:
 if lis > v.parent.lis:
 v.parent.lis = lis
 propagate(v.parent,lis)

t

2t − 1

key u

self,u, key

n

O(t logt n)

t = 2

Input: 6
Output: [{'is_leaf': True, 'keys': [6, 8], 'children': []}, 0]
Explanation: The key 6 appears in the B-tree as the 0th key of a leaf node.

Input: 9
Output: None
Explanation: The key 9 does not appear in the B-tree.

Constraints:

Every key is an integer.

.

.

Code:

Tests:

Run example test case 1:

0 ≤ n ≤ 102

t = 2

In [10]: from btree_utils import insert

class Btree:

 def __init__(self, t):
 self.t = t
 self.root = {"is_leaf": True, "keys": [], "children": []}

 def search(self, u, key):

 # Insert code here

 i = 0
 while i < len(u["keys"]) and key > u["keys"][i]:
 i += 1

 if i < len(u["keys"]) and key == u["keys"][i]:
 return [u, i]

 if u["is_leaf"]:
 return None

 return self.search(u["children"][i], key)

def find_key(key):

 btree = Btree(t=2)

 for k in [3, 5, 6, 2, 4, 1, 8]:
 insert(btree, k)

 return btree.search(btree.root, key)

[{'is_leaf': True, 'keys': [6, 8], 'children': []}, 0]

Run example test case 2:

None

Automatic Evaluation:
Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 2, part a
Running question 2, part a, test id: 1
Input:
6
Obtained output:
[{'is_leaf': True, 'keys': [6, 8], 'children': []}, 0]
<<CORRECT>>
Running question 2, part a, test id: 2
Input:
9
Obtained output:
None
<<CORRECT>>
Running question 2, part a, test id: 3
Input:
4
Obtained output:
[{'is_leaf': True, 'keys': [4], 'children': []}, 0]
<<CORRECT>>
Running question 2, part a, test id: 4
Input:
8
Obtained output:
[{'is_leaf': True, 'keys': [6, 8], 'children': []}, 1]
<<CORRECT>>
Running question 2, part a, test id: 5
Input:
5
Obtained output:
[{'is_leaf': False, 'keys': [3, 5], 'children': [{'is_leaf': True, 'keys': [1, 2], 'c
hildren': []}, {'is_leaf': True, 'keys': [4], 'children': []}, {'is_leaf': True, 'key
s': [6, 8], 'children': []}]}, 1]
<<CORRECT>>

Total correct outputs:
5 out of 5

(b) Derive a mathematical expression for the minimum height of a B-tree containing keys in terms of

its minimum degree and the number of keys .

[15%]

In a minimum height B-tree, all internal nodes have children, so there are

 nodes in total. Equivalently, the number of keys is equal to:

In [11]: input_value = 6
print(find_key(input_value))

In [12]: input_value = 9
print(find_key(input_value))

In [13]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=2,question_part_id='a',function=find_key,
 test_case_list=[1,2,3,4,5],verbose=True)

n

t n

2t

1 + 2t + (2t)2 + (2t)3 + …

Rearranging and taking logs (base 2t):

This only applies for values of for which all layers of the B-tree are rammed full. For other values of

, we won't achieve this perfect structure, so we have that:

(c) In addition to searching for a key according to the value of the key, it is often useful to search for

keys by their rank. The rank of a key is its position in the list of all keys stored in the B-tree, arranged

in ascending order. For example, if a B-tree contains the keys and , the rank of key is , the

rank of key is and so on.

  (i) Describe an algorithm that returns the key with the desired rank. Your algorithm should exhibit

 runtime complexity where is the total number of keys in the tree.

[15%]

This can be achieved by executing an inorder traversal of the B-tree. In detail: - we build a list,

, of keys arranged in ascending order by conducting an inorder traversal

- at each node we visit, append the keys of the node to , interleaving the appending

with visiting each child node to ensure an inorder ordering.

- once the traversal is complete, we simply return index of .

Reference code to implement this algorithm is provided below.

2

n = (2t − 1)(1 + 2t + (2t)2 + (2t)3+. . .)

= (2t − 1)()

= (2t)h+1 − 1

(1)

(2)

(3)

1 − (2t)h+1

1 − 2t

h + 1 = log2t(n + 1)

⟹ h = log2t(n + 1) − 1

(4)

(5)

n

n

h = ⌈log2t(n + 1) − 1⌉ (6)

2, 4, 7 8 2 0

4 1

O(n) n

inorder_keys

visited_keys

n visited_keys

In [14]: def inorder_traversal(node, inorder_keys):

 for ii, key in enumerate(node["keys"]):
 if not node["is_leaf"]:
 keys = inorder_traversal(node["children"][ii], inorder_keys)
 inorder_keys.append(key)

 if not node["is_leaf"]:
 # handle the last child
 inorder_keys = inorder_traversal(node["children"][-1], inorder_keys)

 return inorder_keys

def find_key_with_rank(root, rank):

 inorder_keys = inorder_traversal(root, inorder_keys=[])

 return inorder_keys[rank]

example usage
btree = Btree(t=2)
for k in [3, 5, 6, 2, 4, 1, 8]:
 insert(btree, k)
find_key_with_rank(btree.root, rank=1)

Out[14]:

  (ii) Now suppose that we can store an additional non-negative integer counter at each internal node

of the B-tree that stores the count of all keys in its subtree (this count includes its own keys).

Implement a function, find_key_with_rank_efficient(), that makes use of counters to retrieve

the key with a rank of in a B-tree in time.

[15%]

Examples:
As in Part (a), your searches will be executed on a B-tree of minimum degree, , that has had the

following sequence of keys already inserted prior to your search: [3, 5, 6, 2, 4, 1, 8]. All counters have

been set and stored as a key-value pair of the form "counter": <counter_value> in the

dictionary representing each node (visualised below).

Input: 0
Output: 1
Explanation: The key 1 appears in the B-tree with rank 0.

Input: 3
Output: 4
Explanation: The key 4 appears in the B-tree with rank 3.

rank

rank O(t logt n)

t = 2

In [15]: from btree_utils import set_subtree_counters

def find_key_with_rank_efficient(rank):

 btree = Btree(t=2)

 for key in [3, 5, 6, 2, 4, 1, 8]:
 insert(btree, key)

 set_subtree_counters(btree.root) #Sets the counters to correct values for the who

 # Insert code here

 return find_key_with_rank_recursive(btree.root, rank, total=0)

def find_key_with_rank_recursive(node, rank, total):

 if node["is_leaf"]:

 return node["keys"][rank - total]

 else:

 ii = 0

 while rank >= (total + node["children"][ii]["counter"]):

 total += node["children"][ii]["counter"] # skip over the number of keys i

 if total == rank:
 return node["keys"][ii]
 else:

Tests:

Run example test case 1:

1

Run example test case 2:

4

Automatic Evaluation:

Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 2, part c
Running question 2, part c, test id: 1
Input:
0
Obtained output:
1
<<CORRECT>>
Running question 2, part c, test id: 2
Input:
3
Obtained output:
4
<<CORRECT>>
Running question 2, part c, test id: 3
Input:
6
Obtained output:
8
<<CORRECT>>
Running question 2, part c, test id: 4
Input:
5
Obtained output:
6
<<CORRECT>>
Running question 2, part c, test id: 5
Input:
2
Obtained output:
3
<<CORRECT>>

Total correct outputs:
5 out of 5

 total += 1 # skip current key

 ii += 1

 return find_key_with_rank_recursive(node["children"][ii], rank, total)

In [16]: input_value = 0
print(find_key_with_rank_efficient(input_value))

In [17]: input_value = 3
print(find_key_with_rank_efficient(input_value))

In [18]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=2,question_part_id='c',function=find_key_with_rank_effi
 test_case_list=[1,2,3,4,5],verbose=True)

  (iii) Describe a modified algorithm that improves the runtime complexity of returning the key with a

given rank to irrespective of how is chosen as a function of . Note,

 for . Your algorithm may redefine the meaning of the counter at each

node under the constraints that: (i) the counter remains a non-negative integer; (ii) the counter values

can be set in a single traversal of the whole tree.

[20%]

One algorithm to solve this problem is as follows: 1. Redefine the counters to keep track of the

cumulative key count prior to the current node (for an inorder traversal). 2. When executing the

search down the tree for the key with a given rank: - if the current node is a leaf node, return the

approapriate key by indexing in time - otherwise, conduct a binary search over the cumulative

counters of the children in time. If the query rank exactly matches the rank of one of the

keys, return it in time. Otherwise, recurse into the appropriate child. Reference code to

implement this algorithm is provided below.

O(logn) t n

logt n ⋅ log2 t = log2 n t > 0

O(1)

O(log2 t)

O(1)

In [19]: def set_cumulative_counters(node, cumulative_count=0):
 # use another inorder traversal to keep track of cumulative key count prior to cu
 node["counter"] = cumulative_count
 for ii, key in enumerate(node["keys"]):
 if not node["is_leaf"]:
 cumulative_count = set_cumulative_counters(node["children"][ii], cumulati
 cumulative_count += 1 # account for current key
 if not node["is_leaf"]:
 # handle the last child
 cumulative_count = set_cumulative_counters(node["children"][-1], cumulative_c
 return cumulative_count

def binary_search(counters, query, head=0, tail=None):
 # find largest index that is less than or equal to query
 # assumes query >= counters[0]

 if tail is None:
 tail = len(counters)

 # handle out-of-range at endpoint
 if query > counters[-1]:
 return len(counters)-1

 ptr = (head + tail) // 2
 if query == counters[ptr]:
 return ptr
 elif tail - head <= 1:
 return ptr
 elif query < counters[ptr]:
 return binary_search(counters, query=query, head=head, tail=ptr)
 else:
 return binary_search(counters, query=query, head=ptr, tail=tail)

def find_key_with_rank_more_efficient(node, rank):
 if node["is_leaf"]:
 return node["keys"][rank - node["counter"]]
 else:
 # do a single pass down the tree with binary search at each node over the chl
 counters = [child["counter"] for child in node["children"]]
 ii = binary_search(counters, rank)
 if ii < len(counters) - 1 and rank + 1 == counters[ii+1]:
 return node["keys"][ii]
 else:
 return find_key_with_rank_more_efficient(node["children"][ii], rank)

def run_rank_computation(rank):
 btree = Btree(t=2)
 for key in [3, 5, 6, 2, 4, 1, 8]:

Evaluating question 2, part c
Running question 2, part c, test id: 1
Input:
0
Obtained output:
1
<<CORRECT>>
Running question 2, part c, test id: 2
Input:
3
Obtained output:
4
<<CORRECT>>
Running question 2, part c, test id: 3
Input:
6
Obtained output:
8
<<CORRECT>>
Running question 2, part c, test id: 4
Input:
5
Obtained output:
6
<<CORRECT>>
Running question 2, part c, test id: 5
Input:
2
Obtained output:
3
<<CORRECT>>

Total correct outputs:
5 out of 5

3.
(a) Write the function, scheduler(), which: (i) takes a list, , as an input. This list in turn contains

two lists, the first of which, , stores tasks represented as strings (e.g. "homework"). The second

list, , stores pairwise constraints (e.g. "eat-homework") for the order of the tasks (e.g.

"homework" should be performed only after "eat"); (ii) finds a schedule which respects all the

pairwise constraints.

The schedule is represented as a sequence of tasks separated by "-" . If no valid schedule is

possible, the function outputs a string, "impossible" . The worst case runtime of your solution

should be not worse than , where is the number of tasks and is the number of

constraints.

Note that a function, to_adjacency_representation , is provided to convert the task list, ,

and the constraint list, , into an adjacency list representation. You can ignore the costs of this

operation in your reasoning.

[35%]

 insert(btree, key)
 set_cumulative_counters(btree.root)
 return find_key_with_rank_more_efficient(btree.root, rank)

In [20]: # re-use the tests from the previous part of the question, since the task is the same
from evaluation_script import evaluate_solution
evaluate_solution(question_id=2,question_part_id='c',function=run_rank_computation,
 test_case_list=[1,2,3,4,5],verbose=True)

L L

T

C

O(n + m) n m

(T ,C) T

C

Examples:
Input: [["homework","sleep","drive","eat","learn"],["sleep-drive","eat-
drive","eat-homework","learn-drive"]]
Output: sleep-eat-learn-drive-homework

Input: [["homework","sleep","drive","eat","learn"],["sleep-drive","eat-
drive","homework-drive","learn-drive","drive-eat"]]
Output: impossible

Constraints:

.

.

Code:

1 ≤ n ≤ 50

0 ≤ m ≤ 50

In [21]: def to_adjacency_representation(T,C):
 V={}
 Adj=[]
 for i in range(len(T)):
 V[T[i]]=i
 Adj.append([])
 for i in range(len(C)):
 v0 = C[i].split('-')[0]
 v1 = C[i].split('-')[1]
 Adj[V[v0]].append(V[v1])
 return V,Adj

def BFS(bfs_tree, time, v,v_list):
 v['start_time']=time
 assert v['color']=='white'
 if v['color']=='white':
 v['color']='gray'
 for i in range(len(v['neighbours'])):
 v_n = bfs_tree[v['neighbours'][i]]
 if v_n['color'] == 'white':
 time = time+1
 v_n['parent']=v['id']
 time,v_list=BFS(bfs_tree,time,v_n,v_list)

 elif v_n['color'] == 'gray':
 v['loop_detected']=True
 v['color']='black'
 time+=1
 v['stop_time']=time
 v_list= [v]+v_list
 return time,v_list

def scheduler(L):

 T, C = L[0], L[1]
 V, Adj = to_adjacency_representation(T,C)

 # Insert code here

 bfs_tree = [{'name': T[i],'id':i,'parent':-1,'neighbours':Adj[i], 'loop_detected'

 time=0
 v_list=[]
 for v in bfs_tree:
 if v['color']=='white':
 time,v_list = BFS(bfs_tree,time,v,v_list)
 time +=1

Tests:

Run example test case 1:

learn-eat-sleep-drive-homework

Run example test case 2:

impossible

Automatic Evaluation:

Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 3, part a
Running question 3, part a, test id: 1
Input:
[['homework', 'sleep', 'drive', 'eat', 'learn'], ['sleep-drive', 'eat-drive', 'eat-ho
mework', 'learn-drive']]
Obtained output:
learn-eat-sleep-drive-homework
<<CORRECT>>
Running question 3, part a, test id: 2
Input:
[['homework', 'sleep', 'drive', 'eat', 'learn'], ['sleep-drive', 'eat-drive', 'homewo
rk-drive', 'learn-drive', 'drive-eat']]
Obtained output:
impossible
<<CORRECT>>
Running question 3, part a, test id: 3
Input:
[['homework'], []]
Obtained output:
homework
<<CORRECT>>
Running question 3, part a, test id: 4
Input:
[['1', '2', '3', '4', '5', '6'], ['1-2', '3-2', '3-1', '4-3', '5-4', '6-4']]
Obtained output:
6-5-4-3-1-2
<<CORRECT>>
Running question 3, part a, test id: 5

 result=v_list[0]['name']
 if v_list[0]['loop_detected']==True:
 return "impossible"
 for i in range(1,len(v_list)):
 if v_list[i]['loop_detected']==True:
 return "impossible"
 result+="-"+v_list[i]['name']
 return result

In [22]: input_value = [["homework","sleep","drive","eat","learn"],
 ["sleep-drive","eat-drive","eat-homework","learn-drive"]]
print (scheduler(input_value))

In [23]: input_value = [["homework","sleep","drive","eat","learn"],
 ["sleep-drive","eat-drive","homework-drive","learn-drive","drive-eat"]
print (scheduler(input_value))

In [24]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
from evaluation_script import valid_solution_scheduler
evaluate_solution(question_id=3,question_part_id='a',function=scheduler,
 comparison_function=valid_solution_scheduler,
 test_case_list=[1,2,3,4,5],verbose=True)

Input:
[['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'h8', 'h9', 'h10'], ['h1-h2', 'h2-h3', 'h
3-h4', 'h4-h5', 'h5-h6', 'h6-h7', 'h7-h8', 'h8-h9', 'h9-h10', 'h10-h1']]
Obtained output:
impossible
<<CORRECT>>

Total correct outputs:
5 out of 5

(b) Give brief answers to the following questions.

  (i) Derive worst-case time complexity of your proposed algorithm in Part (a).

[10%]

The proposed method is performing Depth First Search (DFS). Since each vertice is marked from

white into gray and black exactly once and all edges are explored for each vertex exactly once we

have worst case time complexity . Maintaining the list _ of vertices in reverse visited

order is . Producing output is . Hence the total worst-case time complexity is .

  (ii) Explain how depth first search (DFS) can be used to find the strongly connected components in

a directed acyclic graph.

[10%]

First, Depth First Search should be run on a graph to compute finishing times for each vertex

. Then DFS should be called again on the transposed graph by considering the vertices in the

decreasing finishing time . The vertices of each tree in the resulting depth-first forest forms a

separate strongly connected component. Run time complexity: . The correctness of this

algorithm relies on the observation that the component graph is a directed

acyclic graph. Note that reversing edges and considering vertices from the largest finish time

upwards guarantees that the each strongly connected component considered is the leaf in the

transposed graph of strongly connected components not yet considered.

  (iii) Explain how the longest cycle can be found efficiently in a directed graph in which each node

has at most one outgoing edge.

[10%]

We can perform the detection of strongly connected components in . Each component

must consist of a single simple cycle involving all the vertices in that component. This statement can

be proven by contradiction. Lets say two loops exist which share a set of vertices. Then at least one

vertice has to have at least two outgoing edges, otherwise the two loops would coincide. The strongly

connected component with most vertices will give the length of the longest cycle.

(c) Answer questions about the graph illustrated below.

Θ(V + E) v list

Θ(V) O(V) Θ(V + E)

G u. f

u GT

u. f

Θ(V + E)

GSCC = (V SCC,ESCC)

Θ(V + E)

 (i) List vertices in the order in which they would be explored when running the Dijkstra's algorithm,

starting from vertex . A vertex is considered explored when relaxation operation is performed on all

edges outgoing from the vertex in question.

[5%]

A-B-E-C-F-D-G-H

  (ii) List vertices in the order in which they would be explored when running the breadth first search

algorithm starting from vertex . A vertex is considered explored when its color is set to black. In the

case that there is ambiguity in the order of exploration any valid ordering can be provided.

[5%]

A-B-C-E-D-G-F-H

  (iii) Assume this graph is transformed into an undirected graph by replacing all directed edges with

equivalent undirected edges with corresponding weights. Write out the edges of the minimum

spanning tree discovered by Primm's algorithm in the same order as they would be added to this tree.

The algorithm is run starting from vertex .

[5%]

A-D-C-E-B-H-F-G MST length: 12

(d) Write the function, jobs(), which:

  (i) takes a list, , as an input. The first element of this list is another list, , containing names of

students. The second element is also a list, , containing the names of job vacancies. The third

element is a list, , containing job applications represented by the student's name, followed by a

dash, " - ", and the vacancy name to which this student wants to apply and;

  (ii) finds and outputs the maximum number of job vacancies that can be filled. Each student can

apply for multiple jobs but can only take at most one job and each job vacancy can be assigned at

most to one student.

[20%]

Examples:
Input: [["S1","S2","S3"],["Cam","Ox","Lon"],["S1-Cam","S1-Ox","S1-Lon","S2-
Cam","S3-Cam"]]
Output: 2

Input: [["John","Peter"],["Kings","Trinity","Jesus"],["John-Kings","John-
Trinity","John-Jesus","Peter-Jesus"]]
Output: 2

Constraints:

.

.

.

Code:

A

A

A

L

L S

V

A

1 ≤ len(S) ≤ 20

1 ≤ len(V) ≤ 20

0 ≤ len(A) ≤ 100

In [25]: def jobs(L):

 # Insert code here

Tests:

Run example test case 1:

2

Run example test case 2:

2

Automatic Evaluation:

Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 3, part d
Running question 3, part d, test id: 1
Input:
[['S1', 'S2', 'S3'], ['Cam', 'Ox', 'Lon'], ['S1-Cam', 'S1-Ox', 'S1-Lon', 'S2-Cam', 'S
3-Cam']]
Obtained output:
2
<<CORRECT>>

 V, Adj = to_adjacency_representation(L[0]+L[1],L[2])

 n=len(L[0])+len(L[1])

 Adj.append([])
 Adj.append([])

 for i in range(len(L[0])):
 Adj[n].append(i)
 for i in range(len(L[1])):
 Adj[i+len(L[0])].append(n+1)

 while True:
 bfs_tree = [{'neighbours':Adj[i], 'id':i,'parent':-1,'loop_detected':False,'c

 ,= BFS(bfs_tree,0,bfs_tree[n],[])

 if bfs_tree[n+1]['color']=='white':
 break

 v_path=bfs_tree[n+1]

 while not v_path['parent'] == -1:
 v_path_parent = bfs_tree[v_path['parent']]
 Adj[v_path_parent['id']].remove(v_path['id'])
 Adj[v_path['id']].append(v_path_parent['id'])
 v_path=v_path_parent

 return len(L[0])-len(Adj[n])

In [26]: input_value = [["S1","S2","S3"],["Cam","Ox","Lon"],["S1-Cam","S1-Ox","S1-Lon",
 "S2-Cam","S3-Cam"]]
print (jobs(input_value))

In [27]: input_value = [["John","Peter"],["Kings","Trinity","Jesus"],["John-Kings",
 "John-Trinity","John-Jesus","Peter-Jesus"]]
print (jobs(input_value))

In [28]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=3,question_part_id='d',function=jobs,
 test_case_list=[1,2,3,4,5],verbose=True)

Running question 3, part d, test id: 2
Input:
[['John', 'Peter'], ['Kings', 'Trinity', 'Jesus'], ['John-Kings', 'John-Trinity', 'Jo
hn-Jesus', 'Peter-Jesus']]
Obtained output:
2
<<CORRECT>>
Running question 3, part d, test id: 3
Input:
[['S1', 'S2'], ['D1', 'D2'], ['S1-D1', 'S2-D1']]
Obtained output:
1
<<CORRECT>>
Running question 3, part d, test id: 4
Input:
[['S1', 'S2', 'S3', 'S4', 'S5'], ['D1', 'D2', 'D3', 'D4'], ['S1-D1', 'S1-D2', 'S2-D
3', 'S3-D1', 'S3-D2', 'S4-D2', 'S5-D2']]
Obtained output:
3
<<CORRECT>>
Running question 3, part d, test id: 5
Input:
[['S1', 'S2', 'S3', 'S4', 'S5', 'S6'], ['D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D
8'], ['S1-D2', 'S2-D3', 'S3-D4', 'S4-D5', 'S5-D6', 'S6-D1', 'S1-D3', 'S1-D4', 'S1-D
5', 'S1-D6', 'S2-D4', 'S2-D5', 'S2-D6', 'S1-D7', 'S1-D8']]
Obtained output:
6
<<CORRECT>>

Total correct outputs:
5 out of 5

4.
Following a longstanding tradition, Jesus College Boat Club committee hosted the Fairbairn Cup in

December 2022. This competition involved rowing crews that raced to cover a stretch of the River

Cam in the shortest period of time. For each rowing crew participating in the competition, the

committee has gathered the crew name and the time taken to complete the course. In order to publish

a table that ranks rowing crews by performance, the committee would like to sort the crews according

to the time that they took to complete the course.

(a) Provide an implementation of the heapsort algorithm (function heapsort) that takes as

input a list of rowing crews and returns them sorted by course time in ascending order. Your

implementation should employ a max binary heap. The input is an unsorted list of dictionaries of the

form [{"crew": <crew_name>, "time": <course_time_in_secs>}, ...] where

<crew_name> is a string and <course_time_in_secs> is an integer.

[35%]

Examples:

(crews)

n

Input: [{"crew_name": "Peterhouse W1", "course_time": 1038}]
Output: [{"crew_name": "Peterhouse W1", "course_time": 1038}]
Explanation: The input contains only one crew, and thus it is automatically sorted.

Input: [{"crew": "LMBC W1", "time": 1009}, {"crew": "Cantabs Women's VIII",
"time": 990}]
Output: [{"crew": "Cantabs Women's VIII", "time": 990}, {"crew": "LMBC W1",
"time": 1009}]
Explanation: The course time of Cantabs Women's VIII is less than LMBC W1 , and so they are

ordered first in the output.

Constraints:

.

Code:

Tests:

Run example test case 1:

0 ≤ n ≤ 100

In [29]: def left_child(i):
 return 2 * i + 1

def right_child(i):
 return 2 * i + 2

def parent(i):
 return math.floor((i - 1) / 2)

def max_heapify(A, heap_size, i):
 left = left_child(i)
 right = right_child(i)
 max_i = i
 if left < heap_size and A[max_i]["time"] < A[left]["time"]:
 max_i = left
 if right < heap_size and A[max_i]["time"] < A[right]["time"]:
 max_i = right
 if max_i != i:
 A[max_i], A[i] = A[i], A[max_i]
 max_heapify(A, heap_size, max_i)

def build_max_heap(A):
 heap_size = len(A)
 for i in range(heap_size // 2 - 1, -1, -1):
 max_heapify(A, heap_size, i)

def heapsort(crews):

 # Insert code here

 build_max_heap(crews)
 heap_size = len(crews)

 while heap_size > 1:
 crews[0], crews[heap_size-1] = crews[heap_size - 1], crews[0]
 heap_size = heap_size - 1
 max_heapify(crews, heap_size, 0)

 return crews

In [30]: input_value = [{"crew_name": "Peterhouse W1", "course_time": 1038}]
print(heapsort(input_value))

[{'crew_name': 'Peterhouse W1', 'course_time': 1038}]

Run example test case 2:

[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009}]

Automatic Evaluation:

Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 4, part a
Running question 4, part a, test id: 1
Input:
[{'crew_name': 'Peterhouse W1', 'course_time': 1038}]
Obtained output:
[{'crew_name': 'Peterhouse W1', 'course_time': 1038}]
<<CORRECT>>
Running question 4, part a, test id: 2
Input:
[{'crew': 'LMBC W1', 'time': 1009}, {'crew': "Cantabs Women's VIII", 'time': 990}]
Obtained output:
[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009}]
<<CORRECT>>
Running question 4, part a, test id: 3
Input:
[]
Obtained output:
[]
<<CORRECT>>
Running question 4, part a, test id: 4
Input:
[{'crew': 'Caius W1', 'time': 1016}, {'crew': 'Emma W1', 'time': 1043}, {'crew': "Can
tabs Women's VIII", 'time': 990}]
Obtained output:
[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'Caius W1', 'time': 1016},
{'crew': 'Emma W1', 'time': 1043}]
<<CORRECT>>
Running question 4, part a, test id: 5
Input:
[{'crew': 'Caius W1', 'time': 1016}, {'crew': 'Emma W1', 'time': 1043}, {'crew': "Can
tabs Women's VIII", 'time': 990}, {'crew': 'Fitz W1', 'time': 1085}, {'crew': 'LMBC W
1', 'time': 1009}, {'crew': 'Peterhouse W1', 'time': 1038}, {'crew': 'Pembroke W1',
'time': 1012}, {'crew': 'Jesus W1', 'time': 1017}, {'crew': 'Newnham W1', 'time': 103
0}]
Obtained output:
[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009},
{'crew': 'Pembroke W1', 'time': 1012}, {'crew': 'Caius W1', 'time': 1016}, {'crew':
'Jesus W1', 'time': 1017}, {'crew': 'Newnham W1', 'time': 1030}, {'crew': 'Peterhouse
W1', 'time': 1038}, {'crew': 'Emma W1', 'time': 1043}, {'crew': 'Fitz W1', 'time': 10
85}]
<<CORRECT>>

Total correct outputs:
5 out of 5

(b) Derive a mathematical expression for the height of a binary heap as a function of the number of

keys, .

In [31]: input_value = [{"crew": "LMBC W1", "time": 1009},
 {"crew": "Cantabs Women's VIII", "time": 990}]
print(heapsort(input_value))

In [32]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=4,question_part_id='a',function=heapsort,
 test_case_list=[1,2,3,4,5],verbose=True)

n

[15%]

The most number of nodes in a tree of height is .

The least number of nodes in a tree of height is .

So . This implies that and .

Since , we have that . This implies that

(c) Prove that construction of a max binary heap has a complexity of , where denotes the

number of keys.

[15%]

In our build_map_heap function, we perform a for-loop over half of the elements of the list, hence

the complexity is . To prove that complexity is , we first observe that we can decompose

the cost of the build_max_heap function into components:

The maximum number of nodes at height is given by:

The cost of max_heapify is at height , which we can write as for some constant .

The height of a heap is . We can thus write the total cost as:

Hence build_max_heap is in addition to , thus it is .

(d) Suppose that all keys in the input list are identical. What is the Big-O runtime complexity of

heapsort with respect to the number of keys, , for this case? Explain your answer with reference to

your implementation of heapsort.

[10%]

The complexity is .

The first part of heapsort builds a max heap. As noted above, the construction of a max heap has

complexity .

The second part of heapsort involves a for loop that calls max_heapify on elements of the unsorted

array.

However, since all elements are equal, each call to max_heapify will complete in time (there

will be no recursion since there are no heap property violations).

Therefore, the overall complexity is .

(e) A stable sorting algorithm ensures that items that are equal maintain their input ordering in the

sorted ordering. By default, heapsort is not a stable sorting algorithm. In the Fairbairns Cup, some

crews completed the course in exactly the same time. Jesus College Boat Club has decided to rank

crews with equal times according to the order that they appeared in the original unsorted list.

h 2h+1 − 1

h 1 + 2 + ⋯ + 2h−1 + 1 = 2h − 1 + 1 = 2h

2h ≤ n ≤ 2h+1 − 1 h ≤ logn log(n + 1) ≤ h + 1

logn < log(n + 1) h ≤ logn < h + 1 h = ⌊log(n)⌋

Θ(n) n

n

Ω(n) O(n)

∑
h∈node-heights

max. num. nodes at height h × cost of max_heapify at height h (7)

h ⌈ ⌉
n

2h+1

O(h) h C ⋅ h C

⌊logn⌋

⌊logn⌋

∑
h=1

⌈ ⌉ ⋅ Ch

≤

⌊logn⌋

∑
h=1

⋅ Ch since ⌈u⌉ ≤ 2u for u ≥ 1/2

≤ Cn

⌊logn⌋

∑
h=1

≤ Cn
∞

∑
h=1

since all terms in the sum are positive

= Cn ⋅ K for some constant K, since the sum converges

(8)

(9)

(10)

(11)

(12)

n

2h+1

n

2h

h

2h

h

2h

O(n) Ω(n) Θ(n)

n

O(n)

O(n)

O(1)

O(n)

By using additional space, or otherwise, provide an implementation for the stable_heapsort(

) function below that will perform a stable sort of the rowing crews by course time.

[25%]

Examples:
Input: [{"crew": "LMBC W1", "time": 1009}, {"crew": "Cantabs Women's VIII",
"time": 990}]
Output: [{"crew": "Cantabs Women's VIII", "time": 990}, {"crew": "LMBC W1",
"time": 1009}]
Explanation: As for the original heapsort implementation, since the course time of Cantabs
Women's VIII is less than LMBC W1 , they are ordered first in the output.

Input: [{"crew": "Fitz W1", "time": 1085}, {"crew": "Christs", "time": 1085}]
Output: [{"crew": "Fitz W1", "time": 1085}, {"crew": "Christs", "time": 1085}]
Explanation: Since Fitz W1 and Christs W1 recorded the same time, they appear in the output

in the same order as the input.

Constraints:

.

Code:

Examples:

Run example test case 1:

O(n)

crews

0 ≤ n ≤ 20

In [33]: def is_less_than(crew1, crew2):
 if crew1["time"] == crew2["time"]:
 return crew1["initial_index"] < crew2["initial_index"]
 return crew1["time"] < crew2["time"]

def max_heapify(A, heap_size, i):
 left = left_child(i)
 right = right_child(i)
 max_i = i
 if left < heap_size and is_less_than(A[max_i], A[left]):
 max_i = left
 if right < heap_size and is_less_than(A[max_i], A[right]):
 max_i = right
 if max_i != i:
 A[max_i], A[i] = A[i], A[max_i]
 max_heapify(A, heap_size, max_i)

def stable_heapsort(crews):

 # Insert code here

 for ii, _ in enumerate(crews):
 crews[ii]["initial_index"] = ii
 build_max_heap(crews)
 heap_size = len(crews)
 while heap_size > 1:
 crews[0], crews[heap_size-1] = crews[heap_size - 1], crews[0]
 heap_size = heap_size - 1
 max_heapify(crews, heap_size, 0)
 for elem in crews:
 del elem["initial_index"]
 return crews

[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009}]

Run example test case 2:

[{'crew': 'Fitz W1', 'time': 1085}, {'crew': 'Christs', 'time': 1085}]

Automatic Evaluation:
Do not forget to run on all test cases when your final implementation is finished!

Evaluating question 4, part e
Running question 4, part e, test id: 1
Input:
[{'crew': 'LMBC W1', 'time': 1009}, {'crew': "Cantabs Women's VIII", 'time': 990}]
Obtained output:
[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009}]
<<CORRECT>>
Running question 4, part e, test id: 2
Input:
[{'crew': 'Fitz W1', 'time': 1085}, {'crew': 'Christs', 'time': 1085}]
Obtained output:
[{'crew': 'Fitz W1', 'time': 1085}, {'crew': 'Christs', 'time': 1085}]
<<CORRECT>>
Running question 4, part e, test id: 3
Input:
[]
Obtained output:
[]
<<CORRECT>>
Running question 4, part e, test id: 4
Input:
[{'crew': 'Christs', 'time': 1085}, {'crew': 'Fitz W1', 'time': 1085}, {'crew': 'Caiu
s W1', 'time': 1016}]
Obtained output:
[{'crew': 'Caius W1', 'time': 1016}, {'crew': 'Christs', 'time': 1085}, {'crew': 'Fit
z W1', 'time': 1085}]
<<CORRECT>>
Running question 4, part e, test id: 5
Input:
[{'crew': 'Caius W1', 'time': 1016}, {'crew': 'Emma W1', 'time': 1043}, {'crew': "Can
tabs Women's VIII", 'time': 990}, {'crew': 'Fitz W1', 'time': 1085}, {'crew': 'LMBC W
1', 'time': 1009}, {'crew': 'Peterhouse W1', 'time': 1038}, {'crew': 'Christs', 'tim
e': 1085}, {'crew': 'Pembroke W1', 'time': 1012}, {'crew': 'Jesus W1', 'time': 1017},
{'crew': 'Newnham W1', 'time': 1030}]
Obtained output:
[{'crew': "Cantabs Women's VIII", 'time': 990}, {'crew': 'LMBC W1', 'time': 1009},
{'crew': 'Pembroke W1', 'time': 1012}, {'crew': 'Caius W1', 'time': 1016}, {'crew':
'Jesus W1', 'time': 1017}, {'crew': 'Newnham W1', 'time': 1030}, {'crew': 'Peterhouse
W1', 'time': 1038}, {'crew': 'Emma W1', 'time': 1043}, {'crew': 'Fitz W1', 'time': 10
85}, {'crew': 'Christs', 'time': 1085}]
<<CORRECT>>

Total correct outputs:

In [34]: crews = [{"crew": "LMBC W1", "time": 1009},
 {"crew": "Cantabs Women's VIII", "time": 990}]
print(stable_heapsort(crews))

In [35]: crews = [{"crew": "Fitz W1", "time": 1085}, {"crew": "Christs", "time": 1085}]
print(stable_heapsort(crews))

In [36]: #DO NOT EDIT THIS CODE!
from evaluation_script import evaluate_solution
evaluate_solution(question_id=4,question_part_id='e',function=stable_heapsort,
 test_case_list=[1,2,3,4,5],verbose=True)

5 out of 5

END OF PAPER

