The esperance of the approach in on follows:
Small amplitude perturbation (Hawked below with a primine) are introduced
 so that

$$
\begin{aligned}
& \underline{\mu}=\tilde{\mu}_{0}+\mu^{\prime}(x, y, x, t) \\
& p=p_{0}+p^{\prime}(x, y, x, k)
\end{aligned}
$$

and substituted into the governing equations of motion \& hivadary conditions. The system is then linearised, ie. products of small terms are neglected (as diminishingly small). An giver distivithanke to the ware flow can be Fowisir aralyaed, spatially tixpened as an integral, sum of normal modes over a range of wavenumberes. k. Owing to there being an absence of terms in the governing aquestons involving products of perturbations, we can solve for the growth rate $s(k)$ his takin a ssigle mode for which k is treated as a parameter. - subsequently sweeping through all values of k. Solution to linearised system. sought ir terms of nor mail mode solutions, of $f^{\prime}=\hat{f}^{\prime}(z) e^{i k 2}+$ st

For ctr specific problem, green flow it unviscid, governing eqio are

$$
r^{2} \phi_{u}=r^{2} \phi_{i}=0
$$

and boundary conditions

$$
\frac{\partial \phi_{u}}{\partial r}=\frac{\partial \phi_{l}}{\partial r}=0 \quad \text { on } \quad r=a_{0} .
$$

(b). Civein $s^{2}=\frac{k \gamma}{p_{c}+p_{\mu}}\left\{\frac{g\left(p_{u}-p_{c}\right)}{\gamma}-k^{2}\right\}$ as the grout rake then we have immediately $s^{2}>0$ provided $k^{2}<\frac{g\left(p u-p_{L}\right)}{x}$, equivalently

$$
\begin{equation*}
(k a)^{2}<g \frac{\left(p_{u}-p_{L}\right)}{\forall} a^{2} \quad \text { for instability. } \tag{bI}
\end{equation*}
$$

dimensionless nave no.
 is dimersiantes.* of buogany stabilising effects of interfacial torsion
It is the key governing parameter of the system \& characterises the relative effect of destabibing density difference to stablising surface tension.

* $\left[\frac{g\left(\rho u-P_{L}\right) a^{2}}{\gamma}\right] \sim\left[\frac{L}{T^{2}} \cdot \frac{M}{L^{3}} \cdot L^{2} \cdot \frac{1}{M L T^{-2} / L}\right]=1 \Rightarrow$ dimersionter.

Thus for sufficiently large G we expect the systems to be unstable. Indeed, the result from park (b) indicates that as density differences increase so a wider range of dimersionten radial waverumbep perturbations result in instability. By contrast, increasing surface tension \{reduces RHS of $\mathrm{eg}^{2}\left(\right.$ bill $\left.^{\prime}\right)$ \} may be regarded as stabilising large wave number perturbations, etc.
(d) In experiment, one would expect to observe the fastest growing mode. In dimensionless form, the growth rate

$$
\begin{equation*}
s^{2} / \frac{(k a) x}{\left(p_{u}+p_{u}\right) a^{3}}=\frac{g\left(p_{u}-p_{c}\right) a^{2}}{q}-(k a)^{2} \tag{dI}
\end{equation*}
$$

so that the most unstable mode depends on the value of G.
$\left[\begin{array}{ll|l}\text { We are given that: } \\ \begin{array}{ll}\text { ie. axisymmetic } \\ \text { moth } n=0 & 3.83, \ldots \\ \text { non-axisymmetric }\end{array} & \left.\begin{array}{ll}\text { witt } n=1 & 1.84, \ldots \\ \text { witt } n=2 & 3.05, \ldots\end{array}\right]\end{array}\right]$ Given

1 (d) $\cos \frac{d}{}$
For small values of G, i.e. small densing differences, the RHS of (d1) is largest, nok witt $n=0$ but witt $n=1\{$ not $k a$ is smaller witt $n=1$ than $n=0, n=2\}$. Thus for small density differences, the most unstable mode is non-asusymmetric.

For larger values of C_{i}, the most unstable mode can corres pond to a larger value of $k a$ \{growith vates will be bounded $\}$, ix. Those for $n=0$. At larger density differences the flow observed can then be axcisymnetric.
...Ne conclude that the results of the stability analyis are consintent with the obsenvations.

elastic axis; displacement y; angle θ
2 (a)

Considering fores in the vertical direction,

$$
-k y_{1}-b \dot{y}_{1}-k y_{2}-b \dot{y}_{2}=-k_{y}\left(\frac{y_{1}+y_{2}}{2}\right)-b_{y}\left(\frac{\dot{y}_{1}+\dot{y}_{2}}{2}\right)
$$

$$
\left.\Rightarrow 2 k\left(y_{1}+y_{2}\right)=k_{y}\left(y_{1}+y_{2}\right)\right] \text { separating fores proportional }
$$

$$
\text { and } 2 b\left(\dot{y}_{1}+\dot{y}_{2}\right)=b_{y}\left(\dot{y}_{1}+\dot{y}_{2}\right) \int
$$ to displacement from those proportion to velocity.

$$
\Rightarrow \quad k y=2 k \text { and } b_{y}=2 b \text {. }
$$

Similarly, considering moments about the elastic axis:

$$
k y_{1} \frac{d}{2}+b \dot{y}_{1} \frac{d}{2}-k y_{2} \frac{d}{2}-b \dot{y}_{2} \frac{d}{2}=-k_{\theta} \theta-b_{\theta} \dot{\theta} \simeq-k_{\theta}\left(\frac{y_{2}-y_{1}}{d}\right)-b_{\theta}\left(\frac{\left.\dot{y}_{2}-\dot{y}_{1}\right)}{d} \text { for small } \theta\right.
$$

$$
\Rightarrow k \frac{d}{2}\left(y_{1}-y_{2}\right)=k_{0} \frac{\left(y_{1}-y_{2}\right)}{d} \Rightarrow k_{0}=k d^{2} / 2
$$

$$
\text { and similarly for } b \longrightarrow b_{\theta}=b d^{2} / 2
$$

Most students answered this well.
A common enor was to unite
that $I_{\theta}=\left(M_{1}+m_{2}\right) d / 2$
The moment of inertia about the elastic axis is $I_{\theta}=\left(m_{1}+m_{2}\right) d^{2} / 4$
(b) We make the quasi-stealy assumption: that the lift scrag fores at the instantaneous apparent angle of attack are the same as those in a steady flow at that angle of attack.
$\xrightarrow{4}$

- the vebcity of the leading edge is $\dot{y}-c \dot{\theta} / 2$
- the apparent angle of attack is $\frac{-\dot{y}+c \dot{\theta} / 2}{U T}=\alpha$
- the equilibrium angle of attack is zero

We can express F_{y} in terms of the lift coefficient $C_{L}: \quad F_{y}=\frac{1}{2} \rho \pi^{2} C C_{L}$ per unit depth For small oscillations we can wite $C_{L} \simeq \alpha \partial C_{L} /\left.\partial \alpha\right|_{0} \Rightarrow F_{y}=\left.\frac{1}{2} p \pi^{2} c \alpha \frac{\partial G_{0}}{\partial \alpha}\right|_{0} \begin{aligned} & \text { into } p \\ & \text { angle of attack. }\end{aligned}$
$\Rightarrow \quad F y=\frac{1}{2} \rho U^{2} c \frac{\partial a}{\partial \alpha}\left(\frac{-\dot{y}+c \dot{\theta} / 2}{U}\right)$ with F_{y} defined positive upwards.
Few students answered this correctly. Many forgot to include the chord, C.

$$
F_{\theta}=-\frac{c}{4} F_{y}
$$

Some did not make the approximation $C_{L} \simeq \alpha \partial C^{2} /\left.\partial \alpha\right|_{0}$
(c) Substitute F_{y} and F_{θ} into the translational and torsional equations of motion. Assume a modal decomposition of the form $y=Y_{0} e^{s t}$ and $\theta=\theta_{0} e^{s t}$ and substitute into the equations of motion. Express in matrix form as:
$\left[\begin{array}{ll}a_{1}(s) & b(s) \\ c(s) & a_{2}(s)\end{array}\right]\left[\begin{array}{l}y_{0} \\ \theta_{0}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \begin{aligned} & \text { and find } s \text { for which the determinant of the } \\ & \text { matrix is } 2 e_{0} . \text { (Equivalently, state that we }\end{aligned}$ well answered by nearly all students solve the two simultaneous equations.)
This leads to a quartic: $C_{0} s^{4}+C_{1} s^{3}+C_{2} s^{2}+C_{3} s+C_{4}=0$ with fore solutions At least one solution has positive real part (unstable) when $C_{1} C_{2} C_{3}<C_{0} C_{3}^{2}+C_{4} C_{1}^{2}$. This gives an algebraic expression for the parameter values at which the system is unstable.
(d) Each value of s (each eigenvalue) has a corresponding eigenfunction $\left[\begin{array}{l}Y_{0} \\ \theta_{0}\end{array}\right]$, which is in general complex. $y=y_{0} e^{s t}$ and $\theta=\theta_{0} e^{s t}$ can be represented in the complex plane as: In modnlus/argument form this is $y=M_{0}\left|e^{\operatorname{Arg}\left(y_{0}\right)+s t} ; \theta=\left|\theta_{0}\right| e^{A_{r g}\left(\theta_{0}\right)+s t}\right.$ The phase, ϕ, is $\operatorname{Arg}\left(y_{0}\right)-\operatorname{Arg}\left(\theta_{0}\right)=\operatorname{Arg}\left(\frac{y_{0}}{\theta_{0}}\right)$

Around $1 / 3$ students showed that they understood how tofind the phase, and that the phase information is contained in $Y_{0} \& \theta_{0}$
The instantaneous power extracted from the wind is $F_{y} \dot{y}+F_{\theta} \dot{\theta}$. This can be integrated over a cycle, which has period $T=2 \pi / s_{i}$, where $s_{i}=\operatorname{lmag}(s): W=\int_{0}^{T}\left(F_{y} \dot{j}+F_{\theta} \dot{\theta}\right) d t$ Around $1 / 2$ students gave reasonable answer

\qquad
\qquad
3.(a). Given $r=\alpha+\beta \cos k x$
une vol.cons. to relate α to β :

$$
\underbrace{\pi a^{2} \lambda}_{\begin{array}{c}
\text { vol.undishubed } \\
\text { jet in leoget } \lambda
\end{array}}=\int_{\begin{array}{c}
\text { vol. perturbed jet } \\
\text { in tergit } k
\end{array}}^{\int_{0}^{2} \pi r^{2} d x}
$$

$$
\begin{align*}
& \therefore \quad \frac{\pi}{\pi} a^{2} \lambda=\int_{0}^{\lambda} \alpha^{2}+2 \alpha \beta \cos k x+\beta^{2} \cos ^{2} k x d x . \\
& \Rightarrow \quad a^{2}=\alpha^{2}+\frac{\beta^{2}}{2}, \text { i.e. } \alpha=a\left(1-\frac{1}{2} \frac{\beta^{2}}{a^{2}}\right)^{1 / 2} \tag{1}
\end{align*}
$$

$$
P E_{\text {jet }}=\gamma_{x}(\text { surface area })-(2) \underbrace{\frac{d^{2}}{d r}}_{\frac{d s}{d x} / \underbrace{\text { surfacternian } \gamma}_{\text {Copillay jet }}}
$$

Surface area distubed jek in lergtt λ

$$
\begin{equation*}
S A_{1}=\int_{x=0}^{\lambda} 2 \pi r d s \tag{3}
\end{equation*}
$$

Cuvier $d s^{2}=d x^{2}+d r^{2}=d x^{2}\left(1+\frac{d r^{2}}{d x^{2}}\right) \Rightarrow d s=d x\left(1+\frac{d r}{d x} r^{2}\right)^{1 / 2}$

$$
\text { i.e. } d s=d x\left(1+\frac{1}{2}\left(\frac{d r}{d x}\right)^{2}+\ldots\right) \text { and } \frac{d r}{d x}=-\beta k \sin k x
$$

$$
\text { so that } d s \approx\left(1+\frac{1}{2} \beta^{2} k^{2} \sin ^{2} k x\right) d x
$$

Hence,

$$
\begin{aligned}
& S A_{0}=2 \pi \int_{0}^{\lambda}(\alpha+\beta \cosh \alpha x)\left(1+\frac{1}{2} \beta^{2} k^{2} \sin ^{2} 2 x\right) d x \\
& S A=2 \pi \alpha \lambda\left[1+\left(\frac{\beta k}{2}\right)^{2}\right]
\end{aligned}
$$

$$
\Rightarrow P E_{\text {dibithjet }}=\gamma 2 \pi \alpha \lambda\left(1+\left(\frac{\beta k}{2}\right)^{2}\right]
$$

Surface area undistubed jet in lengtt $\lambda=2 \pi a \lambda$

$$
\Rightarrow P E_{\text {undishobed jet }}=\Varangle 2 \pi a \lambda
$$

Hence, $\frac{P E_{\text {disturared }}}{P E \text { undirubed }}=\frac{\alpha}{a}\left[1+\frac{\beta^{2} k^{2}}{4}\right]$. Now elininate α.

Question 3
(b)

Consider a ring of fluid Hat is solaced fits

- radius r_{1}, cicemenferenbal velocity μ_{1}
- raduir r_{2}, with cireunfecrtial velocity μ_{2}^{\prime}

Neglecting viscous force. $s_{1} \mu_{1}=r_{2} \mu_{2}^{\prime}$ as angular rom. consented

$$
\Rightarrow u_{2}^{\prime}=\left(\frac{r_{1}}{r_{2}}\right) u_{1}
$$

As $\quad-\frac{1}{P} \frac{\partial P}{\partial r}=-\frac{L_{s}^{2}}{r}$, the pressure gradient is just sufficient to hold a ring witt velocity u_{2} at the radii r_{2}, thee if $\frac{U_{i}^{12}}{r_{2}^{2}}>\frac{U_{2}^{2}}{r_{2}^{2}}$, ice. $U_{2}^{12}>U_{2}^{2}$ then racial press. grad. is not sufficient to oplet the centrifugal force \& ring contamion outwards (unstable) Thus require $\quad \mu_{2}^{\prime 2} \leq u_{2}^{2} \quad$ for stability.
Sui b. for $\mu_{2}^{\prime}=\left(r_{1} / r_{2}\right) u_{1}$ grues

$$
\begin{aligned}
& r_{1}^{2} \mu_{1}^{2} \leq r_{2}^{2} u_{2}^{2} \quad \Rightarrow \quad r_{2}^{2} u_{2}^{2}-r_{1}^{2} u_{2}^{2} \geqslant 0 \quad\left(r_{1}>r_{2}\right) \\
& \text { ie. } \frac{d}{d r}\left(r^{2} u^{2}\right) \geqslant 0
\end{aligned}
$$

no $\mu=r \Omega$

$$
\Rightarrow \quad \frac{d}{d r}\left(r^{2} \Omega\right)^{2} \geqslant 0 \quad \text { as req } \frac{d}{}
$$

4. (a) $\xrightarrow[\sim]{\text { side view }}$

Natural frequency of mass-spring system $=\omega_{n}=(k / m)^{1 / 2} \mathrm{rad} s^{-1} ; f_{n}=\frac{1}{2 \pi}\left(\frac{k}{m}\right)^{1 / 2}$
Strouhal number (based on f in H_{2}) $=\frac{f d}{U}=0.2$ for vortex shedding over a wile range of R.

The rod will shed cortices at $f \approx \frac{0.2 U}{d} H z$. When the frequency of votes shedding matches the natural frequency of the mass/sponing system, the mass will stat to oscillate with large cumplitude. The vortex shedding frequency will lock on to the mass/ spang natural frequency and the amplitude will increase as U increases. Eventually, the natural vortex shedding frequency will exceed the mass/spring uatuoll fremeery so much that they will lock out. The amplitude will drop:

When the speed decreases, the same behaviour is observed, but for $U T<U_{\text {lapin }}$, rather than for $U>\pi_{\text {lackin }}$
(b) There is a recirculation zone behind the rod: This flow is absolutely unstable in the recirculation zone and slightly beyond the recirculation zone. The large region of absolute instability causes the flow to oscillate at a wul-defined frequency
 (given by Stronhal $\simeq 0.2=f d / \pi)$.

Some students incorrectly stated that the flow is absolutely unstable only when the sledding frequency has locked on to the oscillating frequency.

This oscillator is insensitive to small amplitude forcing of the cylinder but can be oucowhelmed by large amplitude forcing. This is what happen when the vortex shedding frequency locke into the mass/sping oscillation.

Contour of complex angular frequency are:
i) absolutely mustable region.

saddle point has $\omega_{i}>0$
ii) convectively unstable region

saddle point has $w_{i}<0$
(c) With referee to part (b), the oscillations can be reduced by reducing the strength or size of the absolutely nestable region behind the rod. This can be clone by streamlining the rod, to remove the wake, or by allowing air to pass through the rod, which is known as "base heed":

\rightarrow dill holes in the rod to scale base bleed.

With reference to past (a), the oscillations can be reduced by decowclating vorkx shedding along the length of the rod, or clanging the natural frequency by varying d along the length of the rod, e.g. with strakes or a varying d :

helical strake

Apart from the two comments above, this question was answered well by almost all students. Some mote much more than was asked for in the question, which will have cost them time.

Many students forgot about adding devices to suppress vortex shedding.

Varying d.

Question 1

This question really required some thought and was attempted by two thirds of the class. The students generally gave good physical interpretations for the growth rate of the instability given and reasoning for the axisymmetric and non-axisymmetric modes predicted. Evidently, based on their clear descriptions, the vast majority had a good grasp of linear stability analysis.

Question 2

This was predominantly a discussion question, with a straightforward calculation in (a), repetition of the notes in (b,c), and tests of conceptual understanding in (d,e).

Most students answered (a) well, although a common and elementary mistake was to write that the moment of inertia is proportional to $\mathrm{d} / 2$ rather than $\mathrm{d}^{\wedge} 2 / 4$.

Few students answered (b) well, despite it being repetition of the notes. Almost all students, however, answered (c) well, which is the more important question.

Answers to (d,e) were mixed. Around $1 / 3$ of the students showed that they understood how to find the phase information from Y_0 and theta_0. Around $1 / 2$ described how they would calculate the work done over a cycle. Almost all students saw that (e) would lead to a large matrix and around $1 / 4$ correctly identified that the infinite limit becomes like a continuous system with no pinned boundaries or wave reflections.

Question 3

Attempted by all students, both parts of this question were tackled generally very well. The 'show the following...' parts were done well; by contrast, the 'and hence...' parts were either missed or not attempted by numerous candidates.

Question 4

This question was well answered by most students. A common mistake was to write that the flow is absolutely unstable only when the shedding frequency has locked on to the vibration frequency. Many students forgot that devices can be added to a shape to suppress vortex shedding.

