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1 (a) (i) For Q = m, I is the mass density. Thus (data from tables),

I = nm = ρ =
p

RT
=

105

208×400
= 1.202 kgm−3

(ii) For Q = mC2
2 , I is the normal flux of momentum in the x2 direction. Since

the gas is in equilibrium (i.e., no viscous stresses) this is also equal to the pressure.
Thus, I = p = 1 bar.

(iii) For Q = 1
2mC2C3, I is the net flux of KE in the x3 direction. Noting that the

integrand w.r.t. C3 is an odd function (or from an equilibrium argument), I = 0.

(iv) For Q = mC1C2, I is the negative of the shear stress τ12 = τ21 – i.e., it is the
flux of x2 momentum through a plane normal to the x1 direction (or vice versa).
Since the gas is at equilibrium, C1 and C2 are uncorrelated, hence I = 0. [6]

(b) The speed and velocity distributions are related by g(C)dC = f (C)dVc. Thus,

g(C) = f (C)4πC2 =
4πnC2

(2πRT )3/2
exp

{
− C2

2RT

}

The average molecular speed is given by

C =
1
n

∫
∞

0
Cg(C)dC

Making the substitutution x =C/β where β = (2RT )1/2 gives,

C =
4β

π1/2

∫
∞

0
x3 exp(−x2)dx =

2β

π1/2
=

√
8RT

π
=

√
8×208×400

π
= 460.3 ms−1

[5]

(c) (i) Kinetic temperature is defined such that 3kT/2=mC2/2. Thus, C =
√

3RT =√
3×208×400= 499.6 ms−1. The group velocities (to the nearest ms−1) are thus

(600, 50, −100); (100, 550, −100); (100, 50, 400) ms−1

(−400, 50, −100); (100,−450, −100); (100, 50, −600) ms−1

[3]



(ii) The flux is given by

FE =
nmA

6
1
2
{
(u1 +C){(u1 +C)2 +u2

2 +u2
3}

+(u1−C){(u1−C)2 +u2
2 +u2

3}
+u1{u2

1 +(u2 +C)2 +u2
3}

+u1{u2
1 +(u2−C)2 +u2

3}
+u1{u2

1 +u2
2 +(u3 +C)2}

+u1{u2
1 +u2

2 +(u3−C)2}
}

Straightforward simplification then gives

FE =
ρA
6

1
2
{

6u1(u
2
1 +u2

2 +u2
3 +C2)+4Cu1C

}
= ρu1A

{1
2(u

2
1 +u2

2 +u2
3 +C2)+ 1

2
2
3C2}

Substituting C2 = 3RT gives

FE = ρu1A
{1

2(u
2
1 +u2

2 +u2
3)+

5
2RT

}
whence b = 5. From a macroscopic thermodynamic perspective, this reflects the
fact that FE is the flux of stagnation enthalpy – i.e., h = cpT = (3R/2+R)T . [6]

Examiner’s comment: Most parts reasonably well answered, but some candidates
unnecessarily attempted to undertake lengthy integrals and got lost. A pleasing number
gave the correct physical interpretation for the flux of energy in the final section.



2 (a) The target cross-section of the test molecule is A = πd2 (see figure), so the
average volume swept out between collisions is V = λA = λπd2. By the definition of λ ,
this must contain precisely one other molecule, and thus

λπd2n = 1

giving

λ =
1

πnd2

The average time interval between collisions for the test molecule is

τ =
λ

C
=

1
πnd2C

The collision frequency for the test molecule is z = 1/τ , and since there are n molecules
per unit volume, the total collision rate per unit volume is

Z =
nz
2

=
n2πd2C

2

[5]

(b) (i) Consider molecules of CO crossing the plane at x2 = x20, as shown in the
figure. Assume that molecules crossing the plane in the downward direction make
their last collision at x2 = x20 +λ , at which the concentration of CO is

n+
CO

= nCO(x20)+λ
dnCO
dx2

The downward molecular flux is thus

J− =
n+

CO
C

4
=

C
4

(
nCO(x20)+λ

dnCO
dx2

)
Likewise the upward flux from below the plane is

J+ =
n−

CO
C

4
=

C
4

(
nCO(x20)−λ

dnCO
dx2

)
The net upward flux is thus

JCO = J+− J− =−λC
2

dnCO
dx2

from which the diffusion coefficient is D = −λC/2. Note that the analysis is
resonable for N2 and CO because the molecules have the same mass and (it may
be assumed) similar sizes. [6]
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(ii) From a simple dimensional argument, the time scale associated with the
diffusion process is

τ ∼ a2

D
so estimating this timescale requires an estimate for D, which in turn comes from
an estimate for µ at the correct pressure and temperature.
The dynamic viscosity expression gives

µ =
ρCλ

2
=

nmC
2

1
nπd2

From this it can be noted that µ is independent of pressure, but varies with
√

T
(because C ∝

√
T ). The viscosity of N2 at 1 bar and 400 K is thus

µ '
√

400/300×16.5×10−6 = 19.1×10−6

An estimate of D is obtained by dividing this value by the gas density, but the correct
value of density to use is that of the gas mixture at 1 bar and 400 K. This is because
the relevant mean free path (which does depend on density) in the calculation of D is
the mean free path of CO molecules considering collisions with any other molecule
(N2 or CO). Thus,

ρ =
p

RT
=

105

297×400
= 0.842 kgm−3

and hence D = 19.1×10−6/0.842 = 22.7×10−6 m2 s−1.

Finally, therefore τ ∼ a2/D = 440 s. [7]

(iii) For dissimilar molecules, such as helium and nitrogen, the analysis is very
much more complicated because account must be taken of the different sizes in
evaluating the mean free paths, and account must be taken of the different average
molecular speeds in calculating the molecular fluxes. [2]

Examiner’s comment: Most candidates could correctly derive the mean free path
expression and use the mean free path model to obtain an expression for the diffusion
coefficient. Most errors occurred in trying to estimate the value of the diffusion coefficient,
given the viscosity at a different pressure and temperature.



3 (a) The symbols have the following meanings :-

ε is the total energy of the particle.

εp is the potential energy of the particle.

ψ is the wave function, defined such that ψψ∗dV is the probability of finding
the particle within the elemental volume dV [2]

(b) For a field-free box, εp = 0 and ε = 1
2mC2 = 1

2(p2
1 + p2

2 + p2
3)/m where pi is the

momentum in the xi direction. Substituting along with ψ = ψ1ψ2ψ3 gives

ψ2ψ3
d2ψ1
dx2

1
+ψ1ψ3

d2ψ2
dx2

2
+ψ1ψ2

d2ψ3
dx2

3
+

(
2π

h

)2(
p2

1 + p2
2 + p2

3

)
ψ1ψ2ψ3 = 0

which implies
1
ψi

d2ψi

dx2
i
+

(
2π pi

h

)2
= 0 for i = 1,2,3

The general solution is

ψi = Ai sin(2π pixi/h)+Bi cos(2π pixi/h) for i = 1,2,3

The boundary conditions are that ψi = 0 on xi = 0, a for each i = 1,2,3, giving

Bi = 0 ; 2π pia/h = niπ or pi = (nih/2a) where ni = 1,2, ...

The momenta pi are thus quantised and ni is the number of half DeBroglie wavelengths
that fit inside the box in the xi direction. The complete solution is

ψ = Asin
(n1πx1

a

)
sin
(n2πx2

a

)
sin
(n3πx3

a

)
where A = A1A2A3. The energy is given by

ε =
p2

1 + p2
2 + p2

3
2m

=
h2

8ma2

(
n2

1 +n2
2 +n2

3

)
whence B = h2/(8ma2). [11]

(c) Each energy state occupies unit volume in quantum state space (n1,n2,n3). The
number of energy states with energy less than ε is thus one-eighth the volume of a sphere
of radius n = (ε/B)1/2 – i.e.,

Γ(ε) =
1
8
× 4π

3
n3 =

4πa3

3h3 (2mε)3/2



At twice the RMS molecular speed ε = 6kT , thus

Γ(ε) =
4πV
3h3 (6WkT/NA)

3/2

=
4π×0.001

3× (6.626×10−34)3 ×

(
12×40×1.38×10−23×400

6.023×1026

)3/2

= 4.20×1030 states

The number of molecules is

N =
pV
kT

=
105×10−3

1.38×10−23×400
= 1.812×1022 molecules

There are roughly 2×108 states per molecule and so most states will be empty. [7]

Examiner’s comment: This question was well answered by most candidates. Most had
little difficulty in solving the separable differential equation and applying the boundary
conditions. Most were also able to apply the results to a sample of gas in a container.



4 (a) (i) False. The microstates are equally probable for an isolated system at
equilibrium.

(ii) False. The system could be undergoing a compression, after which the volume
is less but the temperature the same. The entropy (and hence the number of
microsates) would therefore decrease.

(iii) True. At temperatures much greater than ε/k, electronic excitation contri-
butes almost nothing to the heat capacity. With three degrees of freedom, cv = 3R/2
and thus cp = 5R/2. [6]

(b) (i) With B� N the probability of finding two or more molecules in each box is
very small. The number of arrangements is thus the number of ways of distributing
N balls amongst B boxes. For distinguishable balls this is

Ωdist. = B× (B−1)× (B−2)...× (B−N +1) =
B!

(B−N)!

Taking into account the indistinguishability of the balls (molecules) gives

Ω' B!
(B−N)!N!

The “'” sign comes from the neglect of the rare cases when there are two or more
molecules in the same box. [4]

(ii) Using Stirling’s approximation

lnΩ = lnB!− lnN!− ln(B−N)!

= B lnB−B−N lnN +N− (B−N) ln(B−N)+(B−N)

= B lnB−N lnN− (B−N) ln(B−N)

= B ln
(

B
B−N

)
+N ln

(
B−N

N

)
The entropy (S = k lnΩ) is thus

S' Nk ln
(

B
N
−1
)
−Bk ln

(
1− N

B

)
[4]

(iii) Since B� N, the above expression can be simplified to

S' k(N lnB−N lnN +N)

but the number of boxes B will be proportional to the volume. Thus,

S' Nk lnV + const. = MR lnV + const.



where the constant depends on temperature and use has been made of R = k/m.
Finally, for an adiabatic, unrestrained expansion of helium (assumed to be an ideal
gas), the temperature remains constant (because the First Law gives U = const.) and
thus

∆S = MR ln(V2/V1) = 0.001×2080× ln2 = 1.442 JK−1

[6]

Examiner’s comment: This question revealed some uncertainty amongst some
candidates about the molecular basis for entropy. Nevertheless, the proofs involving the
number of microstates and Stirling’s formula were well reproduced. Application to an
unresisted expansion caused greater difficulty.

END OF PAPER


